• Title/Summary/Keyword: Automatic Level Controller

Search Result 66, Processing Time 0.04 seconds

Control of Environments in Greenhouse Using Programmable Logic Controller (PLC를 이용한 온실의 환경제어)

  • 김동억;조한근;김형준
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.599-606
    • /
    • 1998
  • This study was carried out to develop the control system with PLC and its operating software and to investigate its control ability of greenhouse environments. Two experimental greenhouses were controlled by PLC and ON/OFF controller, respectively. In greenhouse controlled by PLC, target values of air temperature, relative humidity and $CO_2$ concentration were automatically changed. In warm-water heating, the variation of air temperature was reduced to $\pm$ $0.6^{\circ}C$ by the method of proportional-integration(PI) control with an inverter. In ventilation, the variation of air temperature was reduced, since windows open and close with multistage by mutual relation formula among the target, indoor, and outdoor temperature. Relative humidity at daytime was maintained with range of 35% to 55% by PLC controlled fogger. $CO_2$ concentration was automatically controlled from 300 to 800 $\mu$molㆍ$mol^{-1}$ according to amount of solar radiation. The suppling amount and frequency of nutrient solution were controlled by total integrated solar radiation. Difference in the yield of cucumber in the greenhouse controlled by PLC and by ON/OFF controller was not significant at the 5% level.

  • PDF

IoT Open-Source and AI based Automatic Door Lock Access Control Solution

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Mariappan, Vinayagam;Young, Ko Eun;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.8-14
    • /
    • 2020
  • Recently, there was an increasing demand for an integrated access control system which is capable of user recognition, door control, and facility operations control for smart buildings automation. The market available door lock access control solutions need to be improved from the current level security of door locks operations where security is compromised when a password or digital keys are exposed to the strangers. At present, the access control system solution providers focusing on developing an automatic access control system using (RF) based technologies like bluetooth, WiFi, etc. All the existing automatic door access control technologies required an additional hardware interface and always vulnerable security threads. This paper proposes the user identification and authentication solution for automatic door lock control operations using camera based visible light communication (VLC) technology. This proposed approach use the cameras installed in building facility, user smart devices and IoT open source controller based LED light sensors installed in buildings infrastructure. The building facility installed IoT LED light sensors transmit the authorized user and facility information color grid code and the smart device camera decode the user informations and verify with stored user information then indicate the authentication status to the user and send authentication acknowledgement to facility door lock integrated camera to control the door lock operations. The camera based VLC receiver uses the artificial intelligence (AI) methods to decode VLC data to improve the VLC performance. This paper implements the testbed model using IoT open-source based LED light sensor with CCTV camera and user smartphone devices. The experiment results are verified with custom made convolutional neural network (CNN) based AI techniques for VLC deciding method on smart devices and PC based CCTV monitoring solutions. The archived experiment results confirm that proposed door access control solution is effective and robust for automatic door access control.

Hydraulic Level Control System of Combine Body (콤바인 차체의 유압 수평제어 장치에 관한 연구)

  • Lee S. S.;Mun J. H.;Park W. Y.;Lee C. H.;Lee K. S.;Hwang H.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.5 s.106
    • /
    • pp.425-432
    • /
    • 2004
  • In harvesting rice and barley using combine, the inclination of the body caused by the irregular surface condition of the field and the soil sinking from the unbalanced weight during the grain collection used to make harvesting operation difficult and even impossible. To overcome such a problem hydraulic system far automatic and manual leveling control of a combine has been developed. The system was composed of the combine body and the hydraulic level control system mounted on it. The maximum height of ground clearance was set up to be 290mm. And the limit angle of the leveling control was set up to be $\pm7^{\circ}$. The proposed controller and hydraulic system was implemented to the prototype combine. The prototype combine was designed and built as a separable structure with the body and the track of it. This paper shows results of a specification and design testing with the hydraulic level control system far body of combine.

Development of Nutrient Solution Control System for Water Culture (수경재배(水耕栽培)의 양액관리(養液管理) 자동화(自動化) 시스템 개발(開發))

  • Lee, K.M.;Lee, J.S.;Sun, C.H.;Jang, I.J.;Song, J.G.;Koo, G.H.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.4
    • /
    • pp.328-338
    • /
    • 1990
  • The objective of this study was to develop automatic systems of nutrient solution management for optimal nutrient solution environment and labor saving in water culture which enables factory crop production. In this study, an automatic control system and its driving program are developed to prepare, supply, and recover nutrient solution and to keep the optimal solution concentration level using microcomputers. Based on this study, the following conclusions are obtained: 1. The concentration measured by the system using oscillating circuit designed and built in this study, gave good agreements with the actual nutrient solution. 2. In water culture, the period of 12 hours for measuring concentration, pH, and temperature of the nutrient solution was optimum. Addition of control solution due to the decrease of the nutrient solution concentration is required in every 3 to 5 days. 3. It is estimated that the period of the whole solution change is 15 days, however, further research is needed to assure it. In addition, this period must be shortened in the future. 4. Both the hardware and software of the developed optimal nutrient solution control system in the water culture are working very well, however, it is necessary to develop a more economical one-chip micro controller to substitute for the microcomputer.

  • PDF

An inverse LQG/LTR problem applied to the vehicle steering system

  • Park, Yong-Woon;Kim, Dae-Hyun;Scott, Kimbrough
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.324-327
    • /
    • 1996
  • This paper describes the robust controller design methods applied to the problem of an automatic system for tow-vehicle/trailer combinations. This study followed an inverse Linear Quadratic Regulator(LQR) approach which combines pole assignment methods with conventional LOR methods. It overcomes two concerns associated with these separate methods. It overcomes the robustness problems associated with pole placement methods and trial and error required in the application of the LQR problem. Moreover, a Kalman filter is used as the observer, but is modified by using the loop transfer recovery (LTR) technique with modified transmission zero assignment. The proposed inverse LQG,/LTR controllers enhances the forward motion stability and maneuverability of the combination vehicles. At high speeds, where the inherent yaw damping of the vehicle system decreases, the controller operates to maintain an adequate level of yaw damping. At backward moton, both 4WS (2WS tow-vehicle, 2WS trailer) and 6WS (4WS tow-vehicle, 2WS trailer) control laws are proposed by using inverse LQG/LTR method. To evaluate the stability and robustness of the proposed controllers, simulations for both forward and backward motion were conducted using a detailed nonlinear model. The proposed controllers are significantly more robust than the previous controllers and continues to operate effectively in spite of parameter perturbations that would cause previous controllers to enters limit cycles or to loose stability.

  • PDF

Highly Efficient Control of the Doubly Fed Induction Motor

  • Drid, Said;Makouf, Abdesslam;Nait-Said, Mohamed-Said;Tadjine, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.478-484
    • /
    • 2007
  • This paper deals with the high efficient vector control for the reduction of copper losses of the doubly fed motor. Firstly, the feedback linearization control based on Lyapunov approach is employed to design the underlying controller achieving the double fluxes orientation. The fluxes# controllers are designed independently of the speed. The speed controller is designed using the Lyapunov method especially employed to the unknown load torques. The global asymptotic stability of the overall system is theoretically proven. Secondly, a new Torque Copper Losses Factor is proposed to deal with the problem of the machine copper losses. Its main function is to optimize the torque in keeping the machine saturation at an acceptable level. This leads to a reduction in machine currents and therefore their accompanied copper losses guaranteeing improved machine efficiency. The simulation and experimental results in comparative presentation confirm largely the effectiveness of the proposed DFIM control with a very interesting energy saving contribution.

A Study on a Human-Oriented Compensator for the Human-Machine System

  • Ohtsuka, Hirofumi;Shibasato, Koki;Uemura, Hirofumi;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.657-662
    • /
    • 2003
  • A mechanical system controlled by human operator, such as master-slave system, includes human dynamics in the whole system and such a system is called a human-machine system. In the system, operator's skill is required considerably in order to realize a meaningful operation. In this paper, a new concept and design strategy of compensator that improves the operativity of human-machine system are proposed. The compensator is called "collaborater "that is named after "collaborator" who works together with people. We mean not to design the automatic controller but the compensator that works together with a machine so that human feels the fulfillment in the operation. Our aim is to realize cooperation of people and a machine on a higher level.

  • PDF

Comparison of Voltage Oriented Control and Direct Power Control under Command Mode Transition for PMSG Wind Turbines

  • Kwon, Gookmin;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.173-174
    • /
    • 2016
  • This paper proposes a comparison of Voltage Oriented Control (VOC) and Direct Power Control (DPC) under command mode transition for PMSG Wind Turbines (WT). Based on a neutral point clamped three level back to back type Voltage Source Converter (VSC), proposed control scheme automatically control the generated output power to satisfy a grid requirement from the hierarchical wind farm controller. Automatic command mode transition based on the dc-link voltage error provides a command mode changing between grid command and MPPT mode. It is confirmed through PLECS simulations in Matlab. Simulation result shows that proposed control scheme of VOC and DPC achieves a much shorter transient time of generated output power than the conventional control scheme of MPPT with optimal torque control and VOC under a step response. The proposed control scheme makes it possible to provide a good dynamic performance for PMSG wind turbines in order to generate a high quality output power.

  • PDF

A Study of Quasi-Resonant Flyback Power Supply with Very Wide Input Voltage (광범위 입력전압을 갖는 준공진형 플라이백 파워서플라이의 연구)

  • Lee, Yong-Geun;La, Jae-Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.143-145
    • /
    • 2015
  • One of the many problems besetting the converter designer is being able to design a switching power supply that can operate in the range of very wide input voltage. Specially, in an emergency diesel generator system, the AVR(Automatic Voltage Regulator) is a regulator which regulates the output voltage of the generator at a nominal constant voltage level. In addition, the AVR must be operated in very wide input voltage. Therefore, a power supply for the AVR must be operated at the very wide input voltage range. In this paper, a quasi-resonant flyback power supply with very wide input voltage range is proposed. Also, the performance of the proposed power supply is demonstrated through experiments.

Automatic acquisition of local fuzzy reasoning rules through DNA coding method (DNA 코딩 방법을 이용한 국소 퍼지 추론규칙의 자동획득)

  • Park, Jong-Gyu;Yun, Sung-Yong;Oh, Sung-Kwon;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.543-545
    • /
    • 1999
  • In this paper, the composition method of global and local fuzzy reasoning concepts is researched for reducing the number of rules, not losing the performance for fuzzy controller. A new method is proposed in details that controls the interaction between global reasoning and local reasoning. In order to automatically acquire and optimize the method, the DNA coding algorithm is introduced to the local fuzzy reasoning of the proposed composition fuzzy reasoning method. The method is applied to the real liquid level control system for the purpose of evaluating the Performance. The simulation results show that the proposed technique can produce the fuzzy rules with higher accuracy and feasibility than the conventional methods.

  • PDF