• Title/Summary/Keyword: Automatic Information Extraction

Search Result 592, Processing Time 0.029 seconds

Automatic Extraction of Building Height Using Aerial Imagery and 2D Digital Map (항공사진과 2차원 수치지형도를 이용한 건물 고도의 자동 추출)

  • Jin, Kyeong-Hyeok;Hong, Jae-Min;Yoo, Hwan-Hee;Yeu, Bock-Mo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.2 s.32
    • /
    • pp.65-69
    • /
    • 2005
  • Efficient 3D generation of cultural features, such as buildings in urban area is becoming increasingly important for a number of GIS applications. For reconstruction or 3D building in urban area aerial images, satellite images, LIDAR data have been used mainly. In case of automatically extracting and reconstructing of building height using single aerial images or single satellite images, there are a lot of problems, such as mismatching that result from a geometric distortion of optical images. Therefore, researches or integrating optical images and existing 2D GIS data(e.g. digital map) has been in progress. In this paper, we focused on extracting of building height by means or interest points and vortical line locus for reducing matching points. Also we used digital plotter in order to validate for the results in this study using aerial images(1/5,000) and existing digital map(1/1,000).

  • PDF

Extraction of Ground Points from LiDAR Data using Quadtree and Region Growing Method (Quadtree와 영역확장법에 의한 LiDAR 데이터의 지면점 추출)

  • Bae, Dae-Seop;Kim, Jin-Nam;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.41-47
    • /
    • 2011
  • Processing of the raw LiDAR data requires the high-end processor, because data form is a vector. In contrast, if LiDAR data is converted into a regular grid pattern by filltering, that has advantage of being in a low-cost equipment, because of the simple structure and faster processing speed. Especially, by using grid data classification, such as Quadtree, some of trees and cars are removed, so it has advantage of modeling. Therefore, this study presents the algorithm for automatic extraction of ground points using Quadtree and refion growing method from LiDAR data. In addition, Error analysis was performed based on the 1:5000 digital map of sample area to analyze the classification of ground points. In a result, the ground classification accuracy is over 98%. So it has the advantage of extracting the ground points. In addition, non-ground points, such as cars and tree, are effectively removed as using Quadtree and region growing method.

Displacement Measurement of Structure using Multi-View Camera & Photogrammetry (사진측량법과 다시점 카메라를 이용한 구조물의 변위계측)

  • Yeo, Jeong-Hyeon;Yoon, In-Mo;Jeong, Young-Kee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1141-1144
    • /
    • 2005
  • In this paper, we propose an automatic displacement system for testing stability of structure. Photogrammetry is a method which can measure accurate 3D data from 2D images taken from different locations and which is suitable for analyzing and measuring the displacement of structure. This paper consists of camera calibration, feature extraction using coded target & retro-reflective circle, 3D reconstruction and analyzing accuracy. Multi-view camera which is used for measuring displacement of structure is placed with different location respectively. Camera calibration calculates trifocal tensor from corresponding points in images, from which Euclidean camera is calculated. Especially, in a step of feature extraction, we utilize sub-pixel method and pattern recognition in order to measure the accurate 3D locations. Scale bar is used as reference to measure. the accurate value of world coordinate..

  • PDF

Automatic Extraction of Canine Cataract Area with Fuzzy Clustering (퍼지 클러스터링을 이용한 반려견의 백내장 영역 자동 추출)

  • Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1428-1434
    • /
    • 2018
  • Canine cataract is developed with aging and can cause the blindness or surgical treatment if not treated timely. In this paper, we propose a method for extracting cataract suspicious areas automatically with FCM(Fuzzy C_Means) algorithm to overcome the weakness of previously attempted ART2 based method. The proposed method applies the fuzzy stretching technique and the Max-Min based average binarization technique to the dog eye images photographed by simple devices such as mobile phones. After applying the FCM algorithm in quantization, we apply the brightness average binarization method in the quantized region. The two binarization images - Max-Min basis and brightness average binarization - are ANDed, and small noises are removed to extract the final cataract suspicious areas. In the experiment with 45 dog eye images with canine cataract, the proposed method shows better performance in correct extraction rate than the ART2 based method.

Analysis of Fish Activity in Relation to Feeding Events Using Infrared Cameras (적외선 카메라를 활용한 급이 유무에 따른 어류 활동성 분석)

  • Roh, Tae Kyoung;Ha, Sang Hyun;Kim, Ki Hwan;Kang, Young Jin;Jeong, Seok Chan
    • The Journal of Information Systems
    • /
    • v.32 no.4
    • /
    • pp.137-147
    • /
    • 2023
  • Purpose The domestic aquaculture industry in South Korea utilizes both formulated feeds and live feeds for the cultivation of fish. While nutrient-rich live feeds, particularly using fry, have been preferred since the past, formulated feeds are gaining attention due to issues related to overfishing and environmental concerns. Formulated feeds are advantageous for storage and supply but require a sustained feeding regimen due to the comparatively slower growth rate compared to live feeds. As the aging population in rural areas leads to a shortage of labor, automated feeding systems are increasingly being adopted in aquaculture facilities. To enhance the efficiency of such systems, it is crucial to quantitatively analyze the behavioral changes in fish based on the presence or absence of feed. Design/methodology/approach In the study, RGB cameras and infrared cameras were used to analyze fish activity according to feeding, and an outline extraction algorithm was applied to analyze the differences resulting from this. Findings Unlike RGB cameras, infrared cameras are more suitable for analyzing underwater fish activity as they convert objects' thermal energy into images. It was observed that Canny, Sobel, and Prewitt filters showed the most distinct identification of fish activity.

A Study on the RFID Biometrics System Based on Hippocampal Learning Algorithm Using NMF and LDA Mixture Feature Extraction (NMF와 LDA 혼합 특징추출을 이용한 해마 학습기반 RFID 생체 인증 시스템에 관한 연구)

  • Oh Sun-Moon;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.46-54
    • /
    • 2006
  • Recently, the important of a personal identification is increasing according to expansion using each on-line commercial transaction and personal ID-card. Although a personal ID-card embedded RFID(Radio Frequency Identification) tag is gradually increased, the way for a person's identification is deficiency. So we need automatic methods. Because RFID tag is vary small storage capacity of memory, it needs effective feature extraction method to store personal biometrics information. We need new recognition method to compare each feature. In this paper, we studied the face verification system using Hippocampal neuron modeling algorithm which can remodel the hippocampal neuron as a principle of a man's brain in engineering, then it can learn the feature vector of the face images very fast. and construct the optimized feature each image. The system is composed of two parts mainly. One is feature extraction using NMF(Non-negative Matrix Factorization) and LDA(Linear Discriminants Analysis) mixture algorithm and the other is hippocampal neuron modeling and recognition simulation experiments confirm the each recognition rate, that are face changes, pose changes and low-level quality image. The results of experiments, we can compare a feature extraction and learning method proposed in this paper of any other methods, and we can confirm that the proposed method is superior to the existing method.

Automation of Building Extraction and Modeling Using Airborne LiDAR Data (항공 라이다 데이터를 이용한 건물 모델링의 자동화)

  • Lim, Sae-Bom;Kim, Jung-Hyun;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • LiDAR has capability of rapid data acquisition and provides useful information for reconstructing surface of the Earth. However, Extracting information from LiDAR data is not easy task because LiDAR data consist of irregularly distributed point clouds of 3D coordinates and lack of semantic and visual information. This thesis proposed methods for automatic extraction of buildings and 3D detail modeling using airborne LiDAR data. As for preprocessing, noise and unnecessary data were removed by iterative surface fitting and then classification of ground and non-ground data was performed by analyzing histogram. Footprints of the buildings were extracted by tracing points on the building boundaries. The refined footprints were obtained by regularization based on the building hypothesis. The accuracy of building footprints were evaluated by comparing with 1:1,000 digital vector maps. The horizontal RMSE was 0.56m for test areas. Finally, a method of 3D modeling of roof superstructure was developed. Statistical and geometric information of the LiDAR data on building roof were analyzed to segment data and to determine roof shape. The superstructures on the roof were modeled by 3D analytical functions that were derived by least square method. The accuracy of the 3D modeling was estimated using simulation data. The RMSEs were 0.91m, 1.43m, 1.85m and 1.97m for flat, sloped, arch and dome shapes, respectively. The methods developed in study show that the automation of 3D building modeling process was effectively performed.

Extraction of Agricultural Land Use and Crop Growth Information using KOMPSAT-3 Resolution Satellite Image (KOMPSAT-3급 위성영상을 이용한 농업 토지이용 및 작물 생육정보 추출)

  • Lee, Mi-Seon;Kim, Seong-Joon;Shin, Hyoung-Sub;Park, Jin-Ki;Park, Jong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.411-421
    • /
    • 2009
  • This study refers to develop a semi-automatic extraction of agricultural land use and vegetation information using high resolution satellite images. Data of IKONOS-2 satellite images (May 25 of 2001, December 25 of 2001, and October 23 of 2003), QuickBird-2 satellite images (May 1 of 2006 and November 17 of 2004) and KOMPSAT-2 satellite image (September 17 of 2007) which resemble with the spatial resolution and spectral characteristics of KOMPSAT-3 were used. The precise agricultural land use classification was tried using ISODATA unsupervised classification technique, and the result was compared with on-screen digitizing land use accompanying with field investigation. For the extraction of crop growth information, three crops of paddy, com and red pepper were selected, and the spectral characteristics were collected during each growing period using ground spectroradiometer. The vegetation indices viz. RVI, NDVI, ARVI, and SAVI for the crops were evaluated. The evaluation process was developed using the ERDAS IMAGINE Spatial Modeler Tool.

An Algorithm for Filtering False Minutiae in Fingerprint Recognition and its Performance Evaluation (지문의 의사 특징점 제거 알고리즘 및 성능 분석)

  • Yang, Ji-Seong;An, Do-Seong;Kim, Hak-Il
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.3
    • /
    • pp.12-26
    • /
    • 2000
  • In this paper, we propose a post-processing algorithm to remove false minutiae which decrease the overall performance of an automatic fingerprint identification system by increasing computational complexity, FAR(False Acceptance Rate), and FRR(False Rejection Rate) in matching process. The proposed algorithm extracts candidate minutiae from thinned fingerprint image. Considering characteristics of the thinned fingerprint image, the algorithm selects the minutiae that may be false and located in recoverable area. If the area where the selected minutiae reside is thinned incorrectly due to noise and loss of information, the algorithm recovers the area and the selected minutiae are removed from the candidate minutiae list. By examining the ridge pattern of the block where the candidate minutiae are found, true minutiae are recovered and in contrast, false minutiae are filtered out. In an experiment, Fingerprint images from NIST special database 14 are tested and the result shows that the proposed algorithm reduces the false minutiae extraction rate remarkably and increases the overall performance of an automatic fingerprint identification system.

  • PDF

Quality Evaluation of Automatically Generated Metadata Using ChatGPT: Focusing on Dublin Core for Korean Monographs (ChatGPT가 자동 생성한 더블린 코어 메타데이터의 품질 평가: 국내 도서를 대상으로)

  • SeonWook Kim;HyeKyung Lee;Yong-Gu Lee
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.2
    • /
    • pp.183-209
    • /
    • 2023
  • The purpose of this study is to evaluate the Dublin Core metadata generated by ChatGPT using book covers, title pages, and colophons from a collection of books. To achieve this, we collected book covers, title pages, and colophons from 90 books and inputted them into ChatGPT to generate Dublin Core metadata. The performance was evaluated in terms of completeness and accuracy. The overall results showed a satisfactory level of completeness at 0.87 and accuracy at 0.71. Among the individual elements, Title, Creator, Publisher, Date, Identifier, Rights, and Language exhibited higher performance. Subject and Description elements showed relatively lower performance in terms of completeness and accuracy, but it confirmed the generation capability known as the inherent strength of ChatGPT. On the other hand, books in the sections of social sciences and technology of DDC showed slightly lower accuracy in the Contributor element. This was attributed to ChatGPT's attribution extraction errors, omissions in the original bibliographic description contents for metadata, and the language composition of the training data used by ChatGPT.