• Title/Summary/Keyword: Automatic Information Extraction

Search Result 592, Processing Time 0.037 seconds

Automatic Extraction of Abstract Components for supporting Model-driven Development of Components (모델기반 컴포넌트 개발방법론의 지원을 위한 추상컴포넌트 자동 추출기법)

  • Yun, Sang Kwon;Park, Min Gyu;Choi, Yunja
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.543-554
    • /
    • 2013
  • Model-Driven Development(MDD) helps developers verify requirements and design issues of a software system in the early stage of development process by taking advantage of a software model which is the most highly abstracted form of a software system. In practice, however, many software systems have been developed through a code-centric method that builds a software system bottom-up rather than top-down. So, without support of appropriate tools, it is not easy to introduce MDD to real development process. Although there are many researches about extracting a model from code to help developers introduce MDD to code-centrically developed system, most of them only extracted base-level models. However, using concept of abstract component one can continuously extract higher level model from base-level model. In this paper we propose a practical method for automatic extraction of base level abstract component from source code, which is the first stage of continuous extraction process of abstract component, and validate the method by implementing an extraction tool based on the method. Target code chosen is the source code of TinyOS, an operating system for wireless sensor networks. The tool is applied to the source code of TinyOS, written in nesC language.

Semantic Relation Extraction using Pattern Pairs Sharing a Term (용어를 공유하는 패턴 쌍을 이용한 의미 관계 추출)

  • Kim, Se-Jong;Lee, Yong-Hun;Lee, Jong-Hyeok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.221-225
    • /
    • 2009
  • Constructing an ontology using a mass corpus begins with an automatic semantic relation extraction. A general method regards words appearing between terms as patterns which are used to extract semantic relations. However, previous approaches consider only one sentence to extract a pattern, so they cannot extract semantic relations for terms in different sentences. This paper proposes a semantic relation extraction method using pairs of patterns sharing a term, where each pattern is extracted using one of the seed term pair satisfying the target relation. In our experiments, we achieved the accuracy 83.75% improving previous methods by 7.5% in is-${\alpha}$ relation and the accuracy 83.75% improved by 5% in part-of relation. We also present a possibility of improving the recall by the relative recall.

Automatic Color Palette Extraction for Paintings Using Color Grouping and Clustering (색상 그룹핑과 클러스터링을 이용한 회화 작품의 자동 팔레트 추출)

  • Lee, Ik-Ki;Lee, Chang-Ha;Park, Jae-Hwa
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.7
    • /
    • pp.340-353
    • /
    • 2008
  • A computational color palette extraction model is introduced to describe paint brush objectively and efficiently. In this model, a color palette is defined as a minimum set of colors in which a painting can be displayed within error allowance and extracted by the two step processing of color grouping and major color extraction. The color grouping controls the resolution of colors adaptively and produces a basic color set of given painting images. The final palette is obtained from the basic color set by applying weighted k-means clustering algorithm. The extracted palettes from several famous painters are displayed in a 3-D color space to show the distinctive palette styles using RGB and CIE LAB color models individually. And the two experiments of painter classification and color transform of photographic image has been done to check the performance of the proposed method. The results shows the possibility that the proposed palette model can be a computational color analysis metric to describe the paint brush, and can be a color transform tool for computer graphics.

The Method of Color Image Processing Using Adaptive Saturation Enhancement Algorithm (적응형 채도 향상 알고리즘을 이용한 컬러 영상 처리 기법)

  • Yang, Kyoung-Ok;Yun, Jong-Ho;Cho, Hwa-Hyun;Choi, Myung-Ryul
    • The KIPS Transactions:PartB
    • /
    • v.14B no.3 s.113
    • /
    • pp.145-152
    • /
    • 2007
  • In this paper, we propose an automatic extraction model for unknown translations and implement an unknown translation extraction system using the proposed model. The proposed model as a phrase-alignment model is incorporated with three models: a phrase-boundary model, a language model, and a translation model. Using the proposed model we implement the system for extracting unknown translations, which consists of three parts: construction of parallel corpora, alignment of Korean and English words, extraction of unknown translations. To evaluate the performance of the proposed system, we have established the reference corpus for extracting unknown translation, which comprises of 2,220 parallel sentences including about 1,500 unknown translations. Through several experiments, we have observed that the proposed model is very useful for extracting unknown translations. In the future, researches on objective evaluation and establishment of parallel corpora with good quality should be performed and studies on improving the performance of unknown translation extraction should be kept up.

Automatically Extracting Unknown Translations Using Phrase Alignment (정렬기법을 이용한 미등록 대역어의 자동 추출)

  • Kim, Jae-Hoon;Yang, Sung-Il
    • The KIPS Transactions:PartB
    • /
    • v.14B no.3 s.113
    • /
    • pp.231-240
    • /
    • 2007
  • In this paper, we propose an automatic extraction model for unknown translations and implement an unknown translation extraction system using the proposed model. The proposed model as a phrase-alignment model is incorporated with three models: a phrase-boundary model, a language model, and a translation model. Using the proposed model we implement the system for extracting unknown translations, which consists of three parts: construction of parallel corpora, alignment of Korean and English words, extraction of unknown translations. To evaluate the performance of the proposed system we have established the reference corpus for extracting unknown translation, which comprises of 2,220 parallel sentences including about 1,500 unknown translations. Through several experiments, we have observed that the proposed model is very useful for extracting unknown translations. In the future, researches on objective evaluation and establishment of parallel corpora with good quality should be performed and studies on improving the performance of unknown translation extraction should be kept up.

Slab Region Localization for Text Extraction using SIFT Features (문자열 검출을 위한 슬라브 영역 추정)

  • Choi, Jong-Hyun;Choi, Sung-Hoo;Yun, Jong-Pil;Koo, Keun-Hwi;Kim, Sang-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1025-1034
    • /
    • 2009
  • In steel making production line, steel slabs are given a unique identification number. This identification number, Slab management number(SMN), gives information about the use of the slab. Identification of SMN has been done by humans for several years, but this is expensive and not accurate and it has been a heavy burden on the workers. Consequently, to improve efficiency, automatic recognition system is desirable. Generally, a recognition system consists of text localization, text extraction, character segmentation, and character recognition. For exact SMN identification, all the stage of the recognition system must be successful. In particular, the text localization is great important stage and difficult to process. However, because of many text-like patterns in a complex background and high fuzziness between the slab and background, directly extracting text region is difficult to process. If the slab region including SMN can be detected precisely, text localization algorithm will be able to be developed on the more simple method and the processing time of the overall recognition system will be reduced. This paper describes about the slab region localization using SIFT(Scale Invariant Feature Transform) features in the image. First, SIFT algorithm is applied the captured background and slab image, then features of two images are matched by Nearest Neighbor(NN) algorithm. However, correct matching rate can be low when two images are matched. Thus, to remove incorrect match between the features of two images, geometric locations of the matched two feature points are used. Finally, search rectangle method is performed in correct matching features, and then the top boundary and side boundaries of the slab region are determined. For this processes, we can reduce search region for extraction of SMN from the slab image. Most cases, to extract text region, search region is heuristically fixed [1][2]. However, the proposed algorithm is more analytic than other algorithms, because the search region is not fixed and the slab region is searched in the whole image. Experimental results show that the proposed algorithm has a good performance.

Automatic Object Extraction from Electronic Documents Using Deep Neural Network (심층 신경망을 활용한 전자문서 내 객체의 자동 추출 방법 연구)

  • Jang, Heejin;Chae, Yeonghun;Lee, Sangwon;Jo, Jinyong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.11
    • /
    • pp.411-418
    • /
    • 2018
  • With the proliferation of artificial intelligence technology, it is becoming important to obtain, store, and utilize scientific data in research and science sectors. A number of methods for extracting meaningful objects such as graphs and tables from research articles have been proposed to eventually obtain scientific data. Existing extraction methods using heuristic approaches are hardly applicable to electronic documents having heterogeneous manuscript formats because they are designed to work properly for some targeted manuscripts. This paper proposes a prototype of an object extraction system which exploits a recent deep-learning technology so as to overcome the inflexibility of the heuristic approaches. We implemented our trained model, based on the Faster R-CNN algorithm, using the Google TensorFlow Object Detection API and also composed an annotated data set from 100 research articles for training and evaluation. Finally, a performance evaluation shows that the proposed system outperforms a comparator adopting heuristic approaches by 5.2%.

Sectional corner matching for automatic relative orientation

  • Seo, Ji-Hun;Bang, Ki-In;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.74-74
    • /
    • 2002
  • This paper describes a corner matching technique for automatic relative orientation. Automatically matched corner points from stereo aerial images are used to a data set and help to improve automation of relative orientation process. A general corner matching process of overall image to image has very heavy operation and repetitive computation, so very time-consuming. But aerial stereo images are approximately seventy percent overlapped and little rotated. Based this hypothesis, we designed a sectional corner matching technique calculating correlation section by section between stereo images. Although the overlap information is not accurate, if we know it approximately, the matching process can be lighter. Since the size of aerial image is very large, corner extraction process is performed hierarchically by creating image pyramid, and corners extracted are refined at the higher level image. Extracted corners at the final step are matched section by section. Matched corners are filtered using positional information and their relation and distribution. Filtering process is applied over several steps because the thing affecting to get good result-good relative orientation parameter- is not the number of matched corner points but the accuracy of them. Filtered data is filtered one more during the process calculating relative orientation parameters. When the process is finished, we can get the well matched corner points and the refined Von-Gruber areas besides relative orientation parameters. This sectional corner matching technique is efficient by decreasing unnecessarily repetitive operations and contributes to improve automation for relative orientation.

  • PDF

Automatic Leather Quality Inspection and Grading System by Leather Texture Analysis (텍스쳐 분석에 의한 피혁 등급 판정 및 자동 선별시스템에의 응용)

  • 권장우;김명재;길경석
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.451-458
    • /
    • 2004
  • A leather quality inspection by naked eyes has known as unreliable because of its biological characteristics like accumulated fatigue caused from an optical illusion and biological phenomenon. Therefore it is necessary to automate the leather quality inspection by computer vision technique. In this paper, we present automatic leather qua1ity classification system get information from leather surface. Leather is usually graded by its information such as texture density, types and distribution of defects. The presented algorithm explain how we analyze leather information like texture density and defects from the gray-level images obtained by digital camera. The density data is computed by its ratio of distribution area, width, and height of Fourier spectrum magnitude. And the defect information of leather surface can be obtained by histogram distribution of pixels which is Windowed from preprocessed images. The information for entire leather could be a standard for grading leather quality. The proposed leather inspection system using machine vision can also be applied to another field to substitute human eye inspection.

  • PDF

Machine Fault Diagnosis Method based on DWT Power Spectral Density using Multi Patten Recognition (다중 패턴 인식 기법을 이용한 DWT 전력 스펙트럼 밀도 기반 기계 고장 진단 기법)

  • Kang, Kyung-Won;Lee, Kyeong-Min;Vununu, Caleb;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1233-1241
    • /
    • 2019
  • The goal of the sound-based mechanical fault diagnosis technique is to automatically find abnormal signals in the machine using acoustic emission. Conventional methods of using mathematical models have been found to be inaccurate due to the complexity of industrial mechanical systems and the existence of nonlinear factors such as noise. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We propose an automatic fault diagnosis method using discrete wavelet transform and power spectrum density using multi pattern recognition. First, we perform DWT-based filtering analysis for noise cancelling and effective feature extraction. Next, the power spectral density(PSD) is performed on each subband of the DWT in order to effectively extract feature vectors of sound. Finally, each PSD data is extracted with the features of the classifier using multi pattern recognition. The results show that the proposed method can not only be used effectively to detect faults as well as apply to various automatic diagnosis system based on sound.