• 제목/요약/키워드: Automatic Co-registration

검색결과 15건 처리시간 0.026초

다중센서 영상융합을 위한 대응점 추출에 기반한 자동 영상정합 기법 (Automatic Image Registration Based on Extraction of Corresponding-Points for Multi-Sensor Image Fusion)

  • 최원철;정직한;박동조;최병인;최성남
    • 한국군사과학기술학회지
    • /
    • 제12권4호
    • /
    • pp.524-531
    • /
    • 2009
  • In this paper, we propose an automatic image registration method for multi-sensor image fusion such as visible and infrared images. The registration is achieved by finding corresponding feature points in both input images. In general, the global statistical correlation is not guaranteed between multi-sensor images, which bring out difficulties on the image registration for multi-sensor images. To cope with this problem, mutual information is adopted to measure correspondence of features and to select faithful points. An update algorithm for projective transform is also proposed. Experimental results show that the proposed method provides robust and accurate registration results.

건물 모델과 디지털 영상간의 자동정합 방법 (Automatic Co-registration of Existing Building Models and Digital Image)

  • 정재욱;손건호
    • 한국측량학회지
    • /
    • 제28권1호
    • /
    • pp.125-132
    • /
    • 2010
  • 최근 다양한 센서의 개발에 따라 동일한 지역에 대한 다양한 데이터들의 취득이 가능하게 되었다. 이러한 다차원 데이터를 이용하여 도시모델, 변화 탐지 등과 같은 다양한 활용분야에 적용하기 위해서 각 데이터들 간의 정합과정이 필수적이다. 본 연구에서는 기 구축된 건물모델을 참조모델로 사용하여 디지털 영상을 자동으로 정합하는 방법을 제시하였다. 두 데이터의 정합을 위해 기 구축 건물모델에서 최적정합건물을 추출 하였으며, 이를 영상에서 추출된 직선정합요소와 비교하여 최적정합건물과 상응하는 점 좌표 쌍을 추출하였다. 또한 추출된 점 좌표 쌍을 이용하여 영상데이터의 외부표정요소를 재계산함으로써 두 데이터간의 정합을 수행하였다. 실험결과는 제안된 방법이 두 데이터의 정합을 효율적으로 수행하는 것을 보여준다.

구름이 포함된 고해상도 다시기 위성영상의 자동 상호등록 (Automatic Co-registration of Cloud-covered High-resolution Multi-temporal Imagery)

  • 한유경;김용일;이원희
    • 대한공간정보학회지
    • /
    • 제21권4호
    • /
    • pp.101-107
    • /
    • 2013
  • 일반적으로 상용화되고 있는 고해상도 위성영상에는 좌표가 부여되어 있지만, 촬영 당시 센서의 자세나 지표면 특성 등에 따라서 영상 간의 지역적인 위치차이가 발생한다. 따라서 좌표를 일치시켜주는 영상 간 상호등록 과정이 필수적으로 적용되어야 한다. 하지만 영상 내에 구름이 분포할 경우 두 영상 간의 정합쌍을 추출하는데 어려움을 주며, 오정합쌍을 다수 추출하는 경향을 보인다. 이에 본 연구에서는 구름이 포함된 고해상도 KOMPSAT-2 영상간의 자동 기하보정을 수행하기 위한 방법론을 제안한다. 대표적인 특징기반 정합쌍 추출 기법인 SIFT 기법을 이용하였고, 기준영상의 특징점을 기준으로 원형 버퍼를 생성하여, 오직 버퍼 내에 존재하는 대상영상의 특징점만을 후보정합쌍으로 선정하여 정합률을 높이고자 하였다. 제안 기법을 구름이 포함된 다양한 실험지역에 적용한 결과, SIFT 기법에 비해 높은 정합률을 보였고, 상호등록 정확도를 향상시킴을 확인할 수 있었다.

Co-registration of Human Brain MR and PET Images using the AC-PC Line

  • 백철화;유현선;김원기
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.155-156
    • /
    • 1996
  • The intercommissural(AC-PC) line is automatically detected for HR and PET images. With the detected AC-PC lines from MR and PET images, fully non-iterative automatic co- registration is accomplished. It provides a new automated method for image co-registration.

  • PDF

지상레이저스캐너 데이터의 자동 글로벌 보정 (Automatic Global Registration for Terrestrial Laser Scanner Data)

  • 김창재;어양담;한동엽
    • 한국측량학회지
    • /
    • 제28권2호
    • /
    • pp.281-287
    • /
    • 2010
  • 본 연구에서는 지상레이저스캔 데이터의 보정을 위하여 변환 알고리즘을 비교하였다. 두 개 이상의 시점으로부터 취득된 스캔 데이터를 변환하는 데 많이 사용되는 pair-wise 변환은 오차가 누적된다. 스캔데이터간 보정에 많이 사용되는 ICP 알고리즘은 초기 기하정보가 필요하며, 여러 스캔데이터를 보정할 때 많은 기준점으로 인하여 동시에 보정하기 어렵다. 따라서 정합점을 이용한 글로벌 보정 방법을 수행하였다. 정합점은 SIFT를 이용하여 자동으로 강도영상으로부터 추출하였으며, GP 분석을 이용하여 글로벌 보정을 수행하였다. 제안된 글로벌 보정 방법은 연산속도, 정확도, 자동화 등에 있어서 장점을 지닌 것으로 나타났다. 본 연구의 성과를 이용하여 정합문제에 있어서 정확도와 속도를 적절히 고려한 보정방법을 개발할 수 있다.

Automated Feature-Based Registration for Reverse Engineering of Human Models

  • Jun, Yong-Tae;Choi, Kui-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2213-2223
    • /
    • 2005
  • In order to reconstruct a full 3D human model in reverse engineering (RE), a 3D scanner needs to be placed arbitrarily around the target model to capture all part of the scanned surface. Then, acquired multiple scans must be registered and merged since each scanned data set taken from different position is just given in its own local co-ordinate system. The goal of the registration is to create a single model by aligning all individual scans. It usually consists of two sub-steps: rough and fine registration. The fine registration process can only be performed after an initial position is approximated through the rough registration. Hence an automated rough registration process is crucial to realize a completely automatic RE system. In this paper an automated rough registration method for aligning multiple scans of complex human face is presented. The proposed method automatically aligns the meshes of different scans with the information of features that are extracted from the estimated principal curvatures of triangular meshes of the human face. Then the roughly aligned scanned data sets are further precisely enhanced with a fine registration step with the recently popular Iterative Closest Point (ICP) algorithm. Some typical examples are presented and discussed to validate the proposed system.

변화탐지를 위한 Hyperion 초분광 영상의 자동 기하보정과 밴드선택에 관한 연구 (A Study on Automatic Coregistration and Band Selection of Hyperion Hyperspectral Images for Change Detection)

  • 김대성;김용일;어양담
    • 한국측량학회지
    • /
    • 제25권5호
    • /
    • pp.383-392
    • /
    • 2007
  • 본 연구는 초분광 영상을 이용한 변화탐지 기법의 전처리 과정 중 하나인 영상간 기하보정과 밴드선택에 초점을 맞추고 있다. 최근 그 성능이 입증된 SIFT(Scale-Invariant Feature Transform) 기법을 이용하여 자동화된 기하보정을 수행하였으며, 분광정보의 불변 특성을 반영하는 PIF(Pseudo-Invariant Feature)를 추출하여 영상의 잡음을 추정함으로써, 변화탐지를 위한 유효 밴드를 선택하였다. 또한, 기대최대화(Expectation-Maximization) 기법을 이용한 객관적인 밴드선택 방법을 구현하였다. 제안된 기법들을 실제 적용하기 위해 Hyperion 영상을 사용하였으며, 영상에 나타나는 보정되지 않은 밴드 및 Striping 잡음의 특성을 부가적으로 제거하였다. 결과를 통해, 변화탐지를 위한 최소한의 요구조건인 0.2화소 이내의 정확도(RMSE)를 만족하는 신뢰도 높은 기하보정을 수행할 수 있었으며, 시각적인 판단에 의존하던 밴드선택을 PIF를 통해 객관화할 수 있음을 확인하였다.

ICP 기법을 이용한 MSS 및 UAV 간 점군 데이터 자동정합 (Automatic Registration of Point Cloud Data between MMS and UAV using ICP Method)

  • 김재학;이창민;김형준;이동하
    • 한국지리정보학회지
    • /
    • 제22권4호
    • /
    • pp.229-240
    • /
    • 2019
  • 건설, 의료, 컴퓨터 그래픽스, 도시공간 관리 등 다양한 분야에서 3차원 공간모델이 이용되고 있다. 특히 측량 및 공간정보 분야에서는 최근 스마트시티, 정밀도로지도 구축 등과 같은 고품질의 3차원 공간정보에 대한 수요가 폭발적으로 증가하면서, 이를 보다 손쉽고, 간편하게 취득하기 위하여 MMS, UAV와 같은 관측기술이 활발히 활용되고 있다. 하지만 두 자료를 통합하여 3차원 모델링을 수행하기 위해서는, 두 관측기술 적용 시 발생하는 원시자료 취득센서, 점군 자료생성 방식 및 관측정확도 간의 차이를 효율적으로 보정할 수 있는 최적의 정합방법이 필요하다. 본 연구에서는 일반적인 3차원 모델의 자동정합에 사용되는 ICP(Iterative Closet Point) 기법을 통한 MMS와 UAV 점군 데이터 간 자동정합 성능을 판단하기 위하여, 여의도 지역을 연구대상지역으로 설정하고 UAV 영상을 취득 후 점군 자료로 변환하였다. 그 후 대상지역을 총 4개의 구역으로 구분하여 MMS 관측을 수행하였으며, UAV 점군 자료를 기반으로 각 구역에서 관측된 MMS 점군 자료와 수동정합하고 이를 ICP 기반으로 자동정합한 결과와 비교하였다. 보다 엄밀하게 ICP 기반의 자동정합 성능을 판단하기 위하여 각 구역별로 데이터 중첩률, 노이즈 레벨 등의 변수를 다르게 하여 비교를 수행하였다. 결론적으로 ICP 기반의 자동정합 시 데이터 중첩률이 높고, 노이즈 레벨이 낮을수록 더 높은 정확도로 정합될 수 있다는 것을 알 수 있었다.

Efficient Semi-automatic Annotation System based on Deep Learning

  • Hyunseok Lee;Hwa Hui Shin;Soohoon Maeng;Dae Gwan Kim;Hyojeong Moon
    • 대한임베디드공학회논문지
    • /
    • 제18권6호
    • /
    • pp.267-275
    • /
    • 2023
  • This paper presents the development of specialized software for annotating volume-of-interest on 18F-FDG PET/CT images with the goal of facilitating the studies and diagnosis of head and neck cancer (HNC). To achieve an efficient annotation process, we employed the SE-Norm-Residual Layer-based U-Net model. This model exhibited outstanding proficiency to segment cancerous regions within 18F-FDG PET/CT scans of HNC cases. Manual annotation function was also integrated, allowing researchers and clinicians to validate and refine annotations based on dataset characteristics. Workspace has a display with fusion of both PET and CT images, providing enhance user convenience through simultaneous visualization. The performance of deeplearning model was validated using a Hecktor 2021 dataset, and subsequently developed semi-automatic annotation functionalities. We began by performing image preprocessing including resampling, normalization, and co-registration, followed by an evaluation of the deep learning model performance. This model was integrated into the software, serving as an initial automatic segmentation step. Users can manually refine pre-segmented regions to correct false positives and false negatives. Annotation images are subsequently saved along with their corresponding 18F-FDG PET/CT fusion images, enabling their application across various domains. In this study, we developed a semi-automatic annotation software designed for efficiently generating annotated lesion images, with applications in HNC research and diagnosis. The findings indicated that this software surpasses conventional tools, particularly in the context of HNC-specific annotation with 18F-FDG PET/CT data. Consequently, developed software offers a robust solution for producing annotated datasets, driving advances in the studies and diagnosis of HNC.

기대최대화 알고리즘을 활용한 도로노면 training 자료 자동추출에 관한 연구 - 감독분류를 통한 도로 네트워크의 자동추출을 위하여 (Automatic Extraction of Training Dataset Using Expectation Maximization Algorithm - for Automatic Supervised Classification of Road Networks)

  • 한유경;최재완;이재빈;유기윤;김용일
    • 한국측량학회지
    • /
    • 제27권2호
    • /
    • pp.289-297
    • /
    • 2009
  • 본 논문은 감독분류 기법을 활용한 도로 네트워크 추출의 기본 과정인 트레이닝 자료의 추출과정을 자동화함으로써 감독분류를 활용한 도로 네트워크 추출 과정의 자동화에 기여할 수 있는 방법론의 개발을 목적으로 한다. 이를 위해 본 연구에서는 상호 기하보정 된 항공사진과 LIDAR 자료로부터 정사영상과 LIDAR 반사강도 영상을 제작하고, 기 구축된 수치지도를 활용하여 초기 트레이닝 자료를 자동으로 추출하였다. 하지만 위의 과정을 통하여 추출된 초기 트레이닝 자료는 기하보정과정에서 수반되는 기하학적 오차 및 다양한 개체들로 구성된 도로의 특성에 영향을 받아 다양한 분광특성을 포함하게 된다. 따라서 본 연구에서는 추출된 초기 트레이닝 자료에서 도로 추출의 기본이 되는 도로노면의 분광특성을 통계학적 기법인 기대최대화 알고리즘에 기초하여 효과적으로 결정하기 위한 방법론을 제안하였다. 또한 개발된 방법론의 평가를 위하여 동일지역에 대해 수동으로 취득한 트레이닝 자료와 본 연구에서 자동으로 추출한 자료를 비교 평가하여 정확도를 분석하였다. 실험결과에 대한 통계검증결과 본 논문에서 제안한 도로노면 트레이닝 자료 자동추출기법의 효용성을 증명하였다.