In this paper, we propose an automatic image registration method for multi-sensor image fusion such as visible and infrared images. The registration is achieved by finding corresponding feature points in both input images. In general, the global statistical correlation is not guaranteed between multi-sensor images, which bring out difficulties on the image registration for multi-sensor images. To cope with this problem, mutual information is adopted to measure correspondence of features and to select faithful points. An update algorithm for projective transform is also proposed. Experimental results show that the proposed method provides robust and accurate registration results.
최근 다양한 센서의 개발에 따라 동일한 지역에 대한 다양한 데이터들의 취득이 가능하게 되었다. 이러한 다차원 데이터를 이용하여 도시모델, 변화 탐지 등과 같은 다양한 활용분야에 적용하기 위해서 각 데이터들 간의 정합과정이 필수적이다. 본 연구에서는 기 구축된 건물모델을 참조모델로 사용하여 디지털 영상을 자동으로 정합하는 방법을 제시하였다. 두 데이터의 정합을 위해 기 구축 건물모델에서 최적정합건물을 추출 하였으며, 이를 영상에서 추출된 직선정합요소와 비교하여 최적정합건물과 상응하는 점 좌표 쌍을 추출하였다. 또한 추출된 점 좌표 쌍을 이용하여 영상데이터의 외부표정요소를 재계산함으로써 두 데이터간의 정합을 수행하였다. 실험결과는 제안된 방법이 두 데이터의 정합을 효율적으로 수행하는 것을 보여준다.
일반적으로 상용화되고 있는 고해상도 위성영상에는 좌표가 부여되어 있지만, 촬영 당시 센서의 자세나 지표면 특성 등에 따라서 영상 간의 지역적인 위치차이가 발생한다. 따라서 좌표를 일치시켜주는 영상 간 상호등록 과정이 필수적으로 적용되어야 한다. 하지만 영상 내에 구름이 분포할 경우 두 영상 간의 정합쌍을 추출하는데 어려움을 주며, 오정합쌍을 다수 추출하는 경향을 보인다. 이에 본 연구에서는 구름이 포함된 고해상도 KOMPSAT-2 영상간의 자동 기하보정을 수행하기 위한 방법론을 제안한다. 대표적인 특징기반 정합쌍 추출 기법인 SIFT 기법을 이용하였고, 기준영상의 특징점을 기준으로 원형 버퍼를 생성하여, 오직 버퍼 내에 존재하는 대상영상의 특징점만을 후보정합쌍으로 선정하여 정합률을 높이고자 하였다. 제안 기법을 구름이 포함된 다양한 실험지역에 적용한 결과, SIFT 기법에 비해 높은 정합률을 보였고, 상호등록 정확도를 향상시킴을 확인할 수 있었다.
The intercommissural(AC-PC) line is automatically detected for HR and PET images. With the detected AC-PC lines from MR and PET images, fully non-iterative automatic co- registration is accomplished. It provides a new automated method for image co-registration.
본 연구에서는 지상레이저스캔 데이터의 보정을 위하여 변환 알고리즘을 비교하였다. 두 개 이상의 시점으로부터 취득된 스캔 데이터를 변환하는 데 많이 사용되는 pair-wise 변환은 오차가 누적된다. 스캔데이터간 보정에 많이 사용되는 ICP 알고리즘은 초기 기하정보가 필요하며, 여러 스캔데이터를 보정할 때 많은 기준점으로 인하여 동시에 보정하기 어렵다. 따라서 정합점을 이용한 글로벌 보정 방법을 수행하였다. 정합점은 SIFT를 이용하여 자동으로 강도영상으로부터 추출하였으며, GP 분석을 이용하여 글로벌 보정을 수행하였다. 제안된 글로벌 보정 방법은 연산속도, 정확도, 자동화 등에 있어서 장점을 지닌 것으로 나타났다. 본 연구의 성과를 이용하여 정합문제에 있어서 정확도와 속도를 적절히 고려한 보정방법을 개발할 수 있다.
In order to reconstruct a full 3D human model in reverse engineering (RE), a 3D scanner needs to be placed arbitrarily around the target model to capture all part of the scanned surface. Then, acquired multiple scans must be registered and merged since each scanned data set taken from different position is just given in its own local co-ordinate system. The goal of the registration is to create a single model by aligning all individual scans. It usually consists of two sub-steps: rough and fine registration. The fine registration process can only be performed after an initial position is approximated through the rough registration. Hence an automated rough registration process is crucial to realize a completely automatic RE system. In this paper an automated rough registration method for aligning multiple scans of complex human face is presented. The proposed method automatically aligns the meshes of different scans with the information of features that are extracted from the estimated principal curvatures of triangular meshes of the human face. Then the roughly aligned scanned data sets are further precisely enhanced with a fine registration step with the recently popular Iterative Closest Point (ICP) algorithm. Some typical examples are presented and discussed to validate the proposed system.
본 연구는 초분광 영상을 이용한 변화탐지 기법의 전처리 과정 중 하나인 영상간 기하보정과 밴드선택에 초점을 맞추고 있다. 최근 그 성능이 입증된 SIFT(Scale-Invariant Feature Transform) 기법을 이용하여 자동화된 기하보정을 수행하였으며, 분광정보의 불변 특성을 반영하는 PIF(Pseudo-Invariant Feature)를 추출하여 영상의 잡음을 추정함으로써, 변화탐지를 위한 유효 밴드를 선택하였다. 또한, 기대최대화(Expectation-Maximization) 기법을 이용한 객관적인 밴드선택 방법을 구현하였다. 제안된 기법들을 실제 적용하기 위해 Hyperion 영상을 사용하였으며, 영상에 나타나는 보정되지 않은 밴드 및 Striping 잡음의 특성을 부가적으로 제거하였다. 결과를 통해, 변화탐지를 위한 최소한의 요구조건인 0.2화소 이내의 정확도(RMSE)를 만족하는 신뢰도 높은 기하보정을 수행할 수 있었으며, 시각적인 판단에 의존하던 밴드선택을 PIF를 통해 객관화할 수 있음을 확인하였다.
건설, 의료, 컴퓨터 그래픽스, 도시공간 관리 등 다양한 분야에서 3차원 공간모델이 이용되고 있다. 특히 측량 및 공간정보 분야에서는 최근 스마트시티, 정밀도로지도 구축 등과 같은 고품질의 3차원 공간정보에 대한 수요가 폭발적으로 증가하면서, 이를 보다 손쉽고, 간편하게 취득하기 위하여 MMS, UAV와 같은 관측기술이 활발히 활용되고 있다. 하지만 두 자료를 통합하여 3차원 모델링을 수행하기 위해서는, 두 관측기술 적용 시 발생하는 원시자료 취득센서, 점군 자료생성 방식 및 관측정확도 간의 차이를 효율적으로 보정할 수 있는 최적의 정합방법이 필요하다. 본 연구에서는 일반적인 3차원 모델의 자동정합에 사용되는 ICP(Iterative Closet Point) 기법을 통한 MMS와 UAV 점군 데이터 간 자동정합 성능을 판단하기 위하여, 여의도 지역을 연구대상지역으로 설정하고 UAV 영상을 취득 후 점군 자료로 변환하였다. 그 후 대상지역을 총 4개의 구역으로 구분하여 MMS 관측을 수행하였으며, UAV 점군 자료를 기반으로 각 구역에서 관측된 MMS 점군 자료와 수동정합하고 이를 ICP 기반으로 자동정합한 결과와 비교하였다. 보다 엄밀하게 ICP 기반의 자동정합 성능을 판단하기 위하여 각 구역별로 데이터 중첩률, 노이즈 레벨 등의 변수를 다르게 하여 비교를 수행하였다. 결론적으로 ICP 기반의 자동정합 시 데이터 중첩률이 높고, 노이즈 레벨이 낮을수록 더 높은 정확도로 정합될 수 있다는 것을 알 수 있었다.
This paper presents the development of specialized software for annotating volume-of-interest on 18F-FDG PET/CT images with the goal of facilitating the studies and diagnosis of head and neck cancer (HNC). To achieve an efficient annotation process, we employed the SE-Norm-Residual Layer-based U-Net model. This model exhibited outstanding proficiency to segment cancerous regions within 18F-FDG PET/CT scans of HNC cases. Manual annotation function was also integrated, allowing researchers and clinicians to validate and refine annotations based on dataset characteristics. Workspace has a display with fusion of both PET and CT images, providing enhance user convenience through simultaneous visualization. The performance of deeplearning model was validated using a Hecktor 2021 dataset, and subsequently developed semi-automatic annotation functionalities. We began by performing image preprocessing including resampling, normalization, and co-registration, followed by an evaluation of the deep learning model performance. This model was integrated into the software, serving as an initial automatic segmentation step. Users can manually refine pre-segmented regions to correct false positives and false negatives. Annotation images are subsequently saved along with their corresponding 18F-FDG PET/CT fusion images, enabling their application across various domains. In this study, we developed a semi-automatic annotation software designed for efficiently generating annotated lesion images, with applications in HNC research and diagnosis. The findings indicated that this software surpasses conventional tools, particularly in the context of HNC-specific annotation with 18F-FDG PET/CT data. Consequently, developed software offers a robust solution for producing annotated datasets, driving advances in the studies and diagnosis of HNC.
본 논문은 감독분류 기법을 활용한 도로 네트워크 추출의 기본 과정인 트레이닝 자료의 추출과정을 자동화함으로써 감독분류를 활용한 도로 네트워크 추출 과정의 자동화에 기여할 수 있는 방법론의 개발을 목적으로 한다. 이를 위해 본 연구에서는 상호 기하보정 된 항공사진과 LIDAR 자료로부터 정사영상과 LIDAR 반사강도 영상을 제작하고, 기 구축된 수치지도를 활용하여 초기 트레이닝 자료를 자동으로 추출하였다. 하지만 위의 과정을 통하여 추출된 초기 트레이닝 자료는 기하보정과정에서 수반되는 기하학적 오차 및 다양한 개체들로 구성된 도로의 특성에 영향을 받아 다양한 분광특성을 포함하게 된다. 따라서 본 연구에서는 추출된 초기 트레이닝 자료에서 도로 추출의 기본이 되는 도로노면의 분광특성을 통계학적 기법인 기대최대화 알고리즘에 기초하여 효과적으로 결정하기 위한 방법론을 제안하였다. 또한 개발된 방법론의 평가를 위하여 동일지역에 대해 수동으로 취득한 트레이닝 자료와 본 연구에서 자동으로 추출한 자료를 비교 평가하여 정확도를 분석하였다. 실험결과에 대한 통계검증결과 본 논문에서 제안한 도로노면 트레이닝 자료 자동추출기법의 효용성을 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.