전기비저항 탐사는 역사가 깊으며 널리 사용되는 물리탐사 기술 중의 하나로서 최근에는 단순한 이상대의 확인이 아닌 지하 구조를 영상화하는 것으로 확대, 발전되면서 토목 및 환경 분야에 많은 적용이 시도되고 있다. 본 연구에서는 환경 분야에서의 전기비저항 탐사의 응용 가능성을 입증하기 위하여 전주시 소재의 폐기물 처분장에서 10 m 간격의 쌍극자 배열 전기비저항 탐사를 8개의 측선상에서 수행하였다. 자동 측정 소프트웨어를 개발하여 자료를 획득하였으며 자료처리 과정에서 지형 효과를 보정하였다. 처분장 내부는 대단히 낮은 저비저항대가 발달하고 있으며 삼천천 쪽을 제외하고는 처분장 부지와 저비저항대의 분포가 정확하게 일치하였다. 또한 오염물질의 수직적인 분포도 삼천천 방향으로 가면서 그 심도가 계속적으로 깊어진다. 이는 삼천천 쪽을 제외하고는 처분장의 방벽이 오염물질의 확산을 잘 막아주고 있으며 오염물질이 삼천천 방향으로 확산되었을 가능성이 높다는 것을 의미한다. 전기비저항 영상화 기법을 이용하여 오염대의 수평/수직적인 분포, 심도별 오염물질의 발달 경향, 폐기물 처분의 최대 심도등의 유추가 가능하며 이는 환경 분야에서 전기비저항 탐사의 응용 가능성을 입증하는 것이다.
인력기반 터널 점검은 점검자의 주관적인 판단에 영향을 받으며 지속적인 이력관리가 어렵다. 따라서 최근에는 딥러닝 기반 자동 균열 탐지 연구가 활발히 진행되고 있다. 하지만 대부분의 연구에서는 사용하는 대규모 공개 균열 데이터셋은 터널 내부에서 발생하는 균열과 매우 상이하다. 또한 현행 터널 상태평가에서 정교한 균열 레이블을 구축하기 위해서는 추가적인 작업이 요구된다. 이에 본 연구는 균열 형상이 다소 단순하게 표현된 기존 데이터셋을 딥러닝 모델에 입력하여 균열 탐지 성능을 개선하는 방안을 제시한다. 기존 터널 데이터셋, 고품질 터널 데이터셋과 공개 균열 데이터셋을 조합하여 학습한 딥러닝 모델의 성능 평가와 비교를 수행한다. 그 결과 Cross Entropy 손실함수를 사용한 DeepLabv3+에 공개 데이터셋, 패치 단위 분류와 오버샘플링을 수행한 터널 데이터셋을 모두 학습한 경우 성능이 가장 좋았다. 향후 기 구축된 터널 영상 취득 시스템 데이터를 딥러닝 모델 학습에 효율적으로 활용하기 위한 방안을 수립하는 데 기여할 것으로 기대한다.
하천 시설물의 효율적인 유지관리를 위해서는 대상물에 대해 지속적이고, 주기적인 데이터 취득이 선행되어야 한다. 하천 시설물은 일반 시설물과 달리 넓고 긴 지역을 따라 분포하고 있으므로 지상레이저스캐너, 토탈스테이션 및 GNSS를 활용하는 기존의 하천 측량 방법으로는 공간정보를 취득하는 데에 비용·인력·시간적 한계가 존재한다. 이에 반해, 모바일매핑시스템(Mobile Mapping System, 이하 MMS)은 플랫폼의 이동과 동시에 3차원 공간정보를 취득하므로 하천 시설물의 데이터 취득에 효율적이다. 따라서 본 연구진은 MMS를 활용하여 안양천 4 km 제방에 대해 20분동안 184,646,099개의 포인트를 취득했으며, 이를 10 m 간격의 종 방향으로 분할하여 378개의 횡단면을 추출하였다. 제방 횡단면 포인트 클라우드에서 제외지의 경사면 정보만 따로 분리하여 최대 및 평균 비탈 경사를 자동으로 계산하였으며, 이를 동일 제방에 대해 수동으로 계산한 값과 비교했을 때 RMSE 기준 최대 경사 1.124°, 평균 경사 1.659°의 정확도를 확인할 수 있었다. Reference 경사는 제방의 포인트 클라우드를 plot하고 경사 계산 시 위치정보를 사용하는 두 점을 직접 선택하여 수동으로 계산하였다. 또한 자동 추출한 경사를 하천기본계획 상의 비탈 경사면 설계 기준과 비교하여 MMS를 활용한 하천 시설물 검사의 가능성을 확인하였다.
연구목적: 철도 안전에 영향을 미치는 콘크리트 궤도는 이미지분석 기술을 사용하여 균열을 감지 할 수 있으나 균열을 검출하기 위한 콘크리트 궤도 및 표면 오염의 조건이 균열검측에 방해되므로 이를 효과적으로 제거하기 위한 방법이 필요하다. 연구방법: 본 연구에서는 한국 철도의 균열을 효과적으로 감지하기 위한 이미지 분석 기법을 적용한 프로세스를 제안하고 실험 모듈을 통해 취득된 이미지를 분석하여 성능을 검증하였다. 또한, 우리는 제안된 Gabor Filter Bank 기법을 사용하여 철도 콘크리트 도상 이미지를 획득한 데이터 중 무작위로 선택된 2000개의 이미지를 개발된 프로세스를 통해 자동 균열 검측을 수행하여 타당성을 검토하였다. 연구결과: 연구에서 제안된 시스템으로 균열 검측 결과 탐지율이 약 94% 성능으로 검토되었으며 취득된 철도콘크리트도상이미지의 균열이 동일한 크기와 형식으로 일치하였다. 결론: Gabor Filter Bank를 사용한 균열 검측법은 한국 철도의 콘크리트 궤도도상에 노이즈를 포함한 균열 이미지에 효과적으로 분석되는 것을 확인 할 수 있었다. 이 시스템은 기존의 인간 위주의 철도 산업에서 자동화 된 유지 관리 시스템이 될 수 있을 것으로 기대된다.
본 연구는 MFOS라 명명한 다중센서 기반의 서리 관측 시스템의 고안 및 설치를 통해 서리의 자동 관측 가능성 및 실제 서리 발생 시 관련 영상 자료를 제시하였다. MFOS의 구성은 RGB 카메라, 열화상 카메라, LWS이며, 각 장비들은 서로 상보적인 역할을 수행한다. 서리 발생 전 장비의 시험 운영을 통해, 무강수 사례인 경우 높은 상대습도를 유지할 때 LWS의 전압값은 증가하였고, 특히 주변의 농수로로 인해 높은 상대습도가 유지되는 가평군 관측지에서 크게 증가하였다. RGB 카메라 이미지에서는 일출 전과 일몰 후에 LWS와 지표면을 관측할 수 없었으나 나머지 시간에 대해서는 가능하였다. 강수 사례의 경우 강수 기간 동안 LWS의 전압값은 급격하게 증가하였고, 강수 종료 후 감소하였다. RGB 카메라 이미지는 강수 현상과 상관없이 LWS와 지표면을 관측하였다. 반면, 열화상 카메라의 경우 강수 현상으로 인해 이미지 촬영은 되었지만 LWS와 지표면을 관측하지 못했다. 실제 서리가 발생한 사례의 자료를 통해, LWS의 전압값이 서리에 해당하는 범위보다 높더라도 RGB 카메라가 서리의 지표면 및 장비 표면 발생을 관측할 수 있는 것으로 나타났다.
수면단계는 수면감을 평가하는 데 있어서 중요한 생리지표로서 사용되어 왔다. 그러나 수면다원검사를 이용한 전통적 수면단계 분류방법은 뇌전도(electroencephalogram : EEG), 안전도(electrooculogram : EOG), 심전도(electrocardiogram : ECG), 근전도(electromyogram : EMG) 등을 종합적으로 측정하므로 수면단계를 비교적 정확히 분류할 수 있지만 피험자에게 심한 구속감을 주는 문제가 있다. 본 연구에서는, 각성상태에서 교감신경계가 지배적인 반면에 수면 중에는 부교감 신경계가 더 활동적인 점에 착안하여 수면단계를 간단히 분류할 수 있는 방법을 찾고자 수면단계에 따른 심박동변이도(heart rate variability : HRY)를 분석하였다. 이 실험에는 건강한 대학생 6명이 2일씩 전체 12회의 야간수면에 참여하였다. 수면다원검사 장치를 이용하여 피험자들이 수면을 취하고 있는 동안, EEG, EOG, ECG, EMG(턱 및 다리)를 측정하여 수면단계를 "Standard scoring system for sleep stage"에 따라 자동으로 분류하였다. 그런 뒤, 본 연구를 통하여 제작된 Sleep Data Acquisition/Analysis 시스템을 이용하여 수면다원검사 장치로부터 ECG신호만 추출하여 HRV의 전력스펙트럼을 3개의 영역[저주파수대역(low frequency : LF), 중간주파수대역(medium frequency : MF), 고주파수대역(high frequency : HF)]으로 나누어 분석하였다. 단일채널 ECG를 이용하여 수면단계별로 HRV의 LF/HF를 분석한 결과, W(wakefulness)단계가 2단계에 비하여 325%높게(p<.05), 3단계에 비하여 628%높게(p<.001), 4단계에 비하여 800%높게(p<.001) 나타났으며, 4단계는 REM(rapid eye movement)단계에 비하여 427% 낮게(p<.05), 1단계에 비하여 418% 낮게(p<.05) 나타났다. 또한 LF/HF가 수면단계에 따라 변화하는 양상은 W, REM, 1, 2, 3, 4단계의 순으로 단조 감소하였다. 한편, 수면단계별 MF/(LF+HF)의 차이는 유의하지 않았으나 표본집단의 기술통계치를 살펴본 바 REM단계와 3단계의 평균치가 가장 높았다.치가 가장 높았다.
본 연구는 유리온실 내에서 초분광 영상을 취득하였을 때 차광 커튼과 할로겐이 DN value스펙트럼에 미치는 영향에 관한 것이다. 국립식량과학원 남부작물부 유리온실에 설치된 자동영상취득시스템을 이용하였으며 30° 기울어진 보정용 Tarp (1.4×1.4 m, 12%)를 설치한 후 하우징과 거리별(0.7~2.1 m) 영상데이터를 4가지 조건으로 3반복 취득했다. 차광 커튼과 할로겐을 모두 사용하지 않고 영상을 취득하였을 경우, 직달광부분과 그림자부분은 550 nm를 기준으로 스펙트럼의 변동성이 커졌다. 직달광부분과 그림자부분의 평균 변동계수(Coefficient of variation, CV)값은 각각 1.8%, 4.2%이며 그림자 유무에 관계없이 CV값을 계산 할 경우 12.5%로 증가되었다. 차광 커튼을 사용하지 않고 할로겐만을 이용한 경우 직달광부분과 그림자 부분의 CV 값은 2.6%, 10.6%이고 그림자 유무에 관계없이 CV 값을 계산할 경우 11.2%로 나타났으며 하우징과 거리에 따른 할로겐 보광량 차이로 인해 스펙트럼 변화폭이 증가되었다. 차광커튼만을 사용한 경우 CV 값은 1.6%이며 직달광과 그림자부분의 구분이 사라졌다. 차광 커튼과 할로겐을 모두 사용한 경우 하우징과 거리에 따른 할로겐의 보광량 차이로 CV 값은 10.2%로 증가했다. 할로겐과 차광 커튼을 모두 사용한 영상의 높이 범위 별 CV 값을 계산하였을 때 0.1 m 범위는 1.4%, 0.2 m범위는 1.9%, 0.3 m 범위는 2.6%, 0.4 m 범위는 3.3%로 나타났다. 따라서 온실에서 표준화된 영상데이터를 취득하기 위해서는 차광 커튼을 이용해 광을 균일하게 해야하고 할로겐램프를 이용해 보광 할 경우 대상의 수직 높이가 0.2 m 미만이며 대상과 하우징의 거리가 일정하게 유지 되었을 때 유효하다고 판단된다.
자기공명영상(Magnetic Resonance Image)을 이용한 구조적 연구 방법에서 뇌 구조 세분화 방법은 최근 빠르게 발전하여 구조 이미지의 자동 분할을 위한 유능한 방법론이 되었다. 특히 아틀라스 정보를 이미지에 등록해 피사체의 이미지로 전달하는 분할(Segmentation) 방법은 아틀라스(Atlas)의 정확도에 편향되기 때문에 높은 정확도를 갖고 있는 아틀라스가 필요하게 된다. 알렌 마우스 뇌 아틀라스(Allen Mouse Brain Atlas)는 마우스의 아틀라스 중에서 높은 정확도를 갖고 있어 다양한 분야에서 사용되고 있으며, 신경섬유지도(Tractography)에 필수적인 마우스 뇌구조의 정확한 좌표와 분할 정보를 제공할 수 있다. 또한 기능적 연구 방법인 뇌의 백질 경로를 재구성하는 확산텐서영상(Diffusion Tensor Image)에 대한 확률론적 신경섬유지도를 사용하여 포괄적인 뉴런 네트워크를 매핑 하였다. 인간의 뇌 연구 결과와 마우스의 뇌 연구 결과는 비교분석 할 수 있어 인간에게 적용하기 어려운 실험들을 질환이 모델링된 마우스를 통해 결과를 얻어 임상적으로 이용이 가능하기 때문에 마우스 실험의 중요성이 올라가고 있다. 하지만 마우스를 이용한 연구에서 인간과 마우스의 뇌 크기 차이로 인한 문제가 있어 동등한 영상의 질을 달성하려면 다양한 조건이 필요하게 되며, 그중 대표적으로 충분히 긴 스캔시간이 필요하게 된다. 충분히 긴 스캔시간을 확보하기 위해 본 연구에서는 마우스의 뇌를 샘플화시켜 Ex-vivo 실험이 진행되었으며, 마우스 커넥톰(Connectome) 매핑에 대한 참조를 제공하기 위해 이 연구는 아틀라스 정규화 도구인 ANTx와 확산 텐서 영상을 분석할 도구인 FSL을 사용하여 마우스 뇌의 반자동 분할 및 신경섬유지도 분석 파이프라인을 제시하여 다양한 마우스 모델에 적용하고자 했다. 또한, 신경섬유지도 분석을 위해 획득하는 확산텐서영상의 유용한 신호대 잡음비를 결정하기 위해 다양한 여기수의 영상을 획득해 비교분석하였다.
고해상도 위성영상의 기하보정을 위해 촬영 당시의 위성 센서와 지표면과의 기하학적 관계를 복원하는 센서모델링 과정이 필요하다. 이를 위해 일반적으로 고해상도 위성은 RPC (Rational Polynomial Coefficient) 정보를 제공하고 있지만, 제공 RPC는 위성 센서의 위치와 자세 등에 의해 발생하는 기하왜곡을 포함하고 있다. 이러한 RPC 오차를 보정하기 위해 일반적으로 지상기준점(Ground Control Points)을 활용한다. 지상기준점을 수집하는 대표적인 방법으로 현장 측량을 통해 지상좌표를 취득하지만, 이는 위성영상의 품질이나 촬영 시기에 따른 토지피복의 변화, 기복변위 등으로 위성영상 내에서 지상기준점을 판독하기에 어려운 문제가 있다. 이에 최근에는 다양한 센서로부터 취득된 영상지도를 참조자료로 이용하여, 영상정합 기법을 통해 지상기준점 수집을 자동화할 수 있다. 본 연구에서는 무인항공기 영상을 활용하여 추출된 정합점을 통해 KOMPSAT-3A 위성영상의 RPC를 보정하고자 한다. 무인항공기 영상과 KOMPSAT-3A 위성영상의 정합점 추출을 위한 전처리 방법을 제안하고, 대표적인 특징기반 정합기법(Feature-based matching method)과 영역기반 정합기법(Area-based matching method)인 SURF (Speeded-Up Robust Features)와 위상상관(Phase Correlation) 기법을 각각 적용하여 추출된 정합점의 특성을 비교하였다. 각 기법을 통해 추출된 정합점을 활용하여 RPC 보정계수를 산출한 후, GNSS (Global Navigation Satellite System) 측량을 통해 직접 취득한 검사점에 적용하여 KOMPSAT-3A의 기하품질을 향상하였다. 제안기법의 성능 및 활용성 검증을 위해 GCP를 이용하여 보정한 결과와 비교하여 분석하였다. GCP 기반 보정 방법은 제공 RPC보다 Sample은 2.14 pixel, Line은 5.43 pixel 만큼 개선된 보정 정확도를 보였다. 그리고 SURF와 위상상관 기법을 활용한 제안기법은 제공 RPC보다 각각 Sample은 0.83 pixel, 1.49 pixel만큼 보정되었으며, Line은 4.81 pixel, 5.19 pixel만큼 개선되었다. 이를 통해 GCP 기반 위성영상 RPC 보정 방법의 대안으로 무인항공기 영상이 활용될 수 있음을 확인하였다.
수신증 진단을 받은 소아 환자 $^{99m}Tc$-DMSA 신장 검사에서 영상 획득 후 좌-우측 신장의 섭취 비율을 분석하기 위해 관심영역을 설정하는데, 장비의 자동 관심영역 설정 시 수신증으로 확장되어 있는 신우 부위까지 관심영역에 포함되어 정확한 좌-우 신장의 섭취율이라 할 수 없기에 본 연구는 신장 모형과 확장된 신우의 모형을 이용한 실험을 통해 수신증으로 인해 확장된 신우를 포함한 관심영역과 포함하지 않은 관심영역을 비교하여 보다 개선된 관심영역의 설정 방법을 제시 하고자 한다. 또한, 확장된 신우에 섭취된 방사성 의약품이 신장 피질 세포에서의 섭취인지 아니면 요관의 막힘으로 인한 잔류 소변 인지를 알아 보기 위해 판독의의 도움을 받아 알아 보기로 한다. 두 개의 신장 모형에 같은 양의 물을 채우고 $^{99m}TcO_4$ 111 MBq를 각각 넣어 섞었다. 확장된 신우를 표현하기 위해 5개의 고무 풍선에 물 용량을 각각 10 mL로 채운 후 $^{99m}TcO_4$를 각각 18.5, 37, 55.5, 74, 92.5 MBq를 각각 섞어 준비 하였다. 또한, 고무 풍선에 $^{99m}TcO_4$를 37 MBq으로 고정하고 물 용량을 각각 5, 10, 15, 20, 25 mL를 섞어 준비하였다. 좌측 신장은 모양 그대로 유지하고 우측 신장 모형에 이 고무 풍선을 붙여 수신증의 신장과 비슷한 모형을 만든 후 각각 200만 계수를 수집하였다. 수집된 영상을 확장된 신우를 포함한 관심영역과 포함하지 않은 관심영역을 그려서 좌-우 신장의 섭취비율을 비교 하였고, 재현성을 위해 한 영상당 5회씩 관심 영역을 설정하였다. 환자의 경우 $^{99m}Tc$-DMSA를 1.5~1.9 MBq/kg 주사하고, 3~4시간 후에 검사하였고, 숙련된 3명의 방사선사가 각각 1회씩 관심 영역을 설정하여 비교 평가 하였다. 두 자료 간의 통계적 유의성을 알아보기 위해 SPSS (ver. 17) Wilcoxon Signed Ranks Test 사용하였다. 신장 모형 실험 결과로 확장된 신우를 포함하여 관심영역을 설정한 것과 포함하지 않고 관심영역을 설정한 두 집단간에 수집계수, 주변 계수, 섭취율을 비교해 본 결과 수집계수와 섭취율의 변화된 결과를 얻을 수 있었고, 환자 검사 영상에서 또한 섭취율의 변화된 결과를 얻을 수 있었다. 또한, 확장된 신우에 섭취된 방사성 의약품은 확장된 신우에 의해 요관으로 내려가지 못한 잔류 된 소변이라는 것이 확인되었다. 위 결과에서 보여 주듯이 신장의 좌-우측 섭취율 도출 시에 수신증으로 인해 신우가 확장된 신장에서 신우를 포함하여 관심영역을 설정했을 때의 섭취율이 포함하지 않았을 때의 섭취율에 비해 과섭취율을 보여 주고 있다. 검사자의 작업 편의성과 결과의 신속성을 위해 자동 관심영역으로 설정하여 결과를 도출해 내고 있지만, 이러한 수신증 환자의 경우에는 확장된 신우에 방사성의약품이 섭취가 되어있는 것은 잔류된 소변이므로 관심영역 설정 시에 확장된 신우 부분을 제외하고 수동으로 관심영역을 설정해야 정확한 좌-우측 신장의 섭취율을 도출할 수 있을 것이라 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.