DOI QR코드

DOI QR Code

Unmanned Multi-Sensor based Observation System for Frost Detection - Design, Installation and Test Operation

서리 탐지를 위한 '무인 다중센서 기반의 관측 시스템' 고안, 설치 및 시험 운영

  • 김수현 ((재)국가농림기상센터) ;
  • 이승재 ((재)국가농림기상센터) ;
  • 손승원 ((재)국가농림기상센터) ;
  • 조성식 ((재)국가농림기상센터) ;
  • 조은수 (국립기상과학원 재해기상연구부) ;
  • 김규랑 (국립기상과학원 재해기상연구부)
  • Received : 2021.12.09
  • Accepted : 2022.04.18
  • Published : 2022.06.30

Abstract

This study presented the possibility of automatic frost observation and the related image data acquisition through the design and installation of a Multiple-sensor based Frost Observation System (MFOS). The MFOS is composed of an RGB camera, a thermal camera and a leaf wetness sensor, and each device performs complementary roles. Through the test operation of the equipment before the occurrence of frost, the voltage value of the leaf wetness sensor increased when maintaining high relative humidity in the case of no precipitation. In the case of Gapyeong- gun, the high relative humidity was maintained due to the surrounding agricultural waterways, so the voltage value increased significantly. In the RGB camera image, leaf wetness sensor and the surface were not observed before sunrise and after sunset, but were observed for the rest of the time. In the case of precipitation, the voltage value of the leaf wetness sensor rapidly increased during the precipitation period and decreased after the precipitation was terminated. In the RGB camera image, the leaf wetness sensor and surface were observed regardless of the precipitation phenomenon, but the thermal camera image was taken due to the precipitation phenomenon, but the leaf wetness sensor and surface were not observed. Through, where actual frost occurred, it was confirmed that the voltage value of leaf wetness sensor was higher than the range corresponding to frost, but frost was observed on the surface and equipment surface by the RGB camera.

본 연구는 MFOS라 명명한 다중센서 기반의 서리 관측 시스템의 고안 및 설치를 통해 서리의 자동 관측 가능성 및 실제 서리 발생 시 관련 영상 자료를 제시하였다. MFOS의 구성은 RGB 카메라, 열화상 카메라, LWS이며, 각 장비들은 서로 상보적인 역할을 수행한다. 서리 발생 전 장비의 시험 운영을 통해, 무강수 사례인 경우 높은 상대습도를 유지할 때 LWS의 전압값은 증가하였고, 특히 주변의 농수로로 인해 높은 상대습도가 유지되는 가평군 관측지에서 크게 증가하였다. RGB 카메라 이미지에서는 일출 전과 일몰 후에 LWS와 지표면을 관측할 수 없었으나 나머지 시간에 대해서는 가능하였다. 강수 사례의 경우 강수 기간 동안 LWS의 전압값은 급격하게 증가하였고, 강수 종료 후 감소하였다. RGB 카메라 이미지는 강수 현상과 상관없이 LWS와 지표면을 관측하였다. 반면, 열화상 카메라의 경우 강수 현상으로 인해 이미지 촬영은 되었지만 LWS와 지표면을 관측하지 못했다. 실제 서리가 발생한 사례의 자료를 통해, LWS의 전압값이 서리에 해당하는 범위보다 높더라도 RGB 카메라가 서리의 지표면 및 장비 표면 발생을 관측할 수 있는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 국립기상과학원 용역사업(KMA2018-00622)의 지원으로 수행되었습니다.

References

  1. Campbell Scientific., 2018: LWS: Dielectric leaf wetness sensor instruction manual. Revision 11/18. Available at http://s.campbellsci.com/documents/us/manuals/lws.pdf [accessed 23 June 2022].
  2. Inouye, D. W., 2000: The ecological and evolutionary significance of frost in the context of climate change. Ecology Letters 3, 457-463. https://doi.org/10.1046/j.1461-0248.2000.00165.x
  3. Kim, Y. S., K. M. Shim, M. P. Jung, and I. T. Choi, 2017: Study on the estimation of frost occurrence classification using machine learning methods. Korean Journal of Agricultural and Forest Meteorology 19(3), 86-92. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2017.19.3.86
  4. Ko, B. S., 2019: Development of frost occurrence prediction model in Chungbuk region using multinomial logistic regression analysis. Korea Meteorological Society poster, 500-500.
  5. Kwon, Y. A., 2006: The spatial distribution and recent trend of frost occurrence days in South Korea. Journal of the Korean Geographical Society 41(3), 361-372. (in Korean with English abstract)
  6. Kwon, Y. A., H. S. Lee, W. T. Kwon, and K. O. Boo, 2008: The weather characteristics of frost occurrence days for protecting crops against frost damage. Journal of the Korean Geographical Society 43(6), 824-842. (in Korean with English abstract)
  7. Lee, Y. B., and S. T. Ro, 2002: Frost formation on a vertical plate in simultaneously developing flow. Experimental Thermal and Fluid Science 26(8), 939-945. https://doi.org/10.1016/S0894-1777(02)00216-9
  8. MAFRA, 2014: Support for disaster recovery costs for farms affected by abnormally low temperatures, Ministry of Agriculture, Food and Rural Affairs, Sejong, Korea.
  9. Ministry of Agriculture, Food and Rural Affairs, 2014: Support for disaster recovery coasts for farms affected by abnormally low temperatures and frost.
  10. Noh, I. S., H. W. Doh, S. O. Kim, S. H. Kim, S. E. Shin, and S.-J. Lee, 2021: Machine learning-based hourly frost-prediction system optimized for orchards using automatic weather station and digital camera image data. Atmosphere 12(7), 846. https://doi.org/10.3390/atmos12070846
  11. Sallis, P., M. Jarur, and M. Trujillo, 2009: Frost prediction characteristics and classification using computational neural networks. In Australian Journal of Intelligent Information Processing Systems 10(1), 50-58.
  12. Savage, M. J., 2012: Estimation of frost occurrence and duration of frost for a short-grass surface. South African Journal of Plant and Soil 29, 173-187. https://doi.org/10.1080/02571862.2012.748938
  13. Song, M. J., and C. Dang, 2018: Review on the measurement and calculation of frost characteristics. International Journal of Head and Mass Transfer 124, 586-614. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.094
  14. Warmund, M. R., P. Guinan, and G. Fernandez, 2008: Temperatures and cold damage to small fruit crops across the Eastern United States associated with the april 2007 freeze. HortScience 43(6), 1643-1647. https://doi.org/10.21273/hortsci.43.6.1643