DOI QR코드

DOI QR Code

Relationships between Soil Carbon Storage and Soil Properties of Urban Parks in Jinju-si, Gyeongsangnam-do

진주시 도시공원의 토양 탄소저장량과 토양성질의 관계

  • An, So Eun (Department of Forest Convergence Science, Gyeongsang National University) ;
  • Lee, Jeongmin (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Choonsig (Department of Forest Convergence Science, Gyeongsang National University)
  • 안소은 (경상국립대학교 산림융복합학과) ;
  • 이정민 (고려대학교 환경생태공학과) ;
  • 김춘식 (경상국립대학교 산림융복합학과)
  • Received : 2022.03.25
  • Accepted : 2022.04.27
  • Published : 2022.06.30

Abstract

This study was performed to determine carbon (C) storage of urban parks [Hadae park (established year: 1977), Songlim park (established year: 1990), Pyeonggeo park (1992), Chojeon park (2005)] in Jinju-si, Gyeongsangnam-do. The soil at 0-30 cm depth was collected to measure soil C concentration. Bulk density in all soil depths was not significantly different among the four parks, whereas coarse fragments (>2 mm) were significantly higher in the Chojeon park than in the Pyeonggeo park. Soil pH and electrical conductivity were highest in Chojeon park among four parks. Soil C concentrations in all soil depths were significantly higher in the Hadae park established in 19 77 compared with the other parks established since 1990. Mean soil C concentration at 0-30 cm was the highest in the Hadae park (1.04%), followed by the Chojeon park (0.87%), the Songlim park (0.75%), and the Pyeonggeo park (0.57%). Soil C storage at 0-10 cm was not significantly different among the four urban parks, whereas soil C storage at 10-20 cm and 20-30 cm was higher in the Hadae parks than in the other parks. Total soil C storage was significantly higher in the Hadae park (28,425 kg C ha-1) than in the Pyeonggeo park (15,622 kg C ha-1). Mean soil C concentration and C storage were positively correlated with silt content and negatively correlated with sand content. The results suggest that soil C storage of urban parks in Jinju-si might be related to the established period of parks and silt contents.

도시 공원지역의 토양 탄소저장량을 평가하기 위해 경상남도 진주시 하대공원(1977년 조성), 송림공원(1990년 조성), 평거공원(1992년 조성), 초전공원(2005년 조성) 등을 대상으로 0~30cm 깊이의 토양 성질 및 토양 탄소 저장량을 조사하였다. 토양 용적밀도는 공원 간 차이가 없었으나 석력함량, 토양 pH, 토양 전기전도도 등은 가장 최근에 조성된 초전공원이 가장 높은 값을 보였다. 토양 탄소 농도는 조사한 모든 깊이에서 조성연도가 가장 오래되고 미사함량이 높았던 하대공원이 평거공원에 비해 높은 농도를 보였다. 토양 0~30cm 깊이의 평균 탄소 농도는 하대공원 1.04%, 초전공원 0.87%, 송림공원 0.75%, 평거공원 0.57%이었다. 토양 탄소저장량은 0~10cm 깊이의 경우 공원 간 차이가 없었으나, 10~20cm와 20~30cm 깊이는 하대공원이 타 공원에 비해 높은 저장량을 보였다. 총 탄소저장량은 하대공원이 28,425 kg C ha-1으로 송림공원의 20,561 kg C ha-1이나 평거공원 15,622 kg C ha-1에 비해 높았다. 평균 토양 탄소 농도 및 탄소 저장량은 미사함량과 정의 상관을 모래함량과는 부의 상관을 보였다. 본 연구 결과에 따르면 진주시의 공원지역의 탄소저장량의 증가는 조성연도나 토양 내 미사함량과 관련이 있을 가능성을 시사한다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었습니다(과제번호 22UMRG-C158194-03). 저자들은 시료채취와 분석에 도움을 주신 경상국립대학교 산림토양연구실 대학원생들에게 감사한 마음을 전합니다.

References

  1. Augustin, C., and L. J. Cihacek, 2016: Relationships between soil carbon and soil texture in the Northern Great Plains. Soil Science 181(8), 386-392. https://doi.org/10.1097/SS.0000000000000173
  2. Bae, J., and Y. Ryu, 2015: Land use and land-use changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landscape and Urban Planning 136, 57-67. https://doi.org/10.1016/j.landurbplan.2014.11.015
  3. Cambou, A., R. K. Shaw, H. Huot, L. Vidal-Beaudet, G. Hunault, P. Cannavo, F. Nold, and C. Schwartz, 2018: Estimation of soil organic carbon stocks of two cities, New York City and Paris. Science and the Total Environment 644, 452-464. https://doi.org/10.1016/j.scitotenv.2018.06.322
  4. Canedoli, C., C. Ferre, D. A. E. Khair, E. Podoa-Schioppa, and R. Comolli, 2020: Soil organic carbon stock in different urban land uses: high stock evidence in urban parks. Urban Ecosystem 23, 159-171. https://doi.org/10.1007/s11252-019-00901-6
  5. Choi, S. E., B. Ham, C. Song, E. Park, J. Kim, and W. K. Lee, 2020: Pilot study and development of activity data for greenhouse gas inventory of settlement categories in Korea: A case of Inchon Seo-gu. Journal of Climate Change Research 11(3), 187-196. https://doi.org/10.15531/KSCCR.2020.11.3.187
  6. Jo, H. K., J. Y. Kim, and H. M. Park, 2019: Carbon reduction and planning strategies for urban parks in Seoul. Urban Forestry & Urban Greening 41, 48-54. https://doi.org/10.1016/j.ufug.2019.03.009
  7. Kalra, Y. P., and D. G. Maynard, 1991: Methods Manual for Forest Soil and Plant Analysis. Forestry Canada, Northwest Region, Northern Forestry Centre, Edmonton, Alberta. Information Report NOR-X-319E, 116pp.
  8. Kang, S. C., B. H. Han, J. W. Choi, J. H. Jang, and H. S. Kim, 2015: Study on tree growth and soil environment relations of Sudokwon landfill. Korean Journal of Environment and Ecology 29(3), 431-440. https://doi.org/10.13047/KJEE.2015.29.3.431
  9. Kim, G. S., J. H. Pi, J. H. An, C. H. Lim, S. H. Jung, S. J. Jo, and, C. S. Lee, 2016: Carbon budget evaluated in two urban parks of Seoul. Korean Journal of Environment and Ecology 49(1), 51-61. https://doi.org/10.11614/KSL.2016.49.1.051
  10. Kim, M.-S., S.-H. Jeon, T.-G. Lee, Ha-I. Jung, C.-W. Kim, and Y.-K. Kim, 2021: Comparison of wet oxidation and dry combustion methods for organic matter analysis of soils derived from granite, limestone, and volcanic ash. Korean Journal of Soil Science and Fertilizer 54(4), 674-683. https://doi.org/10.7745/KJSSF.2021.54.4.674
  11. Korea Meteorological Administration, 2017: 2017 Annual Climatological Reports 323pp.
  12. Linden, L., A. Riikonen, H. Sttala, and V. Yli-Pelkonen, 2020: Quantifying carbon stocks in urban parks under cold climate conditions. Urban Forestry & Urban Greening 49, 126633. https://doi.org/10.1016/j.ufug.2020.126633
  13. Mao, Q., G. Huang, A. Buyantuev, J. Wu, S. Luo, and K. Ma, 2014: Spatial heterogeneity of urban soils: the case of the Beijing metropolitan region, China. Ecological Processes 3, 23. https://doi.org/10.1186/s13717-014-0023-8
  14. Matus, F., 2021: Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: a meta-analysis. Scientific Reports 11, 6438. https://doi.org/10.1038/s41598-021-84821-6
  15. SAS Institute Inc., 2003: SAS/STAT Statistical Software. Version 9.1 SAS publishing Cary, NC.
  16. Schwendenmann, L., and N. D. Mitchell, 2014: Carbon accumulation by native trees and soils in an urban park, Auckland. New Zealand Journal of Ecology 38(2), 213-220.
  17. Ter Braak, C. J. F., and P. Smilauer. 2018: Canoco Reference Manual and User's Guide: Software for Ordination (Version 5.10). Microcomputer Power, Ithaca, NY, USA, 536pp.
  18. Yoon, T. K., K. W. Seo, G. S. Park, Y. M. Son, and Y. Son, 2016: Surface soil carbon storage in urban green space in three major South Korean cities. Forests 7, 115. https://doi.org/10.3390/f7060115