• Title/Summary/Keyword: Automated guided vehicle

Search Result 156, Processing Time 0.032 seconds

모멘트 생성 함수 기법을 이용한 유연 제조 셀의 해석적 성능 평가

  • 박용수;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.506-511
    • /
    • 1996
  • The performance evaluation of flexible manufacturing systems or cells at the stages of design and planning is one of important issues in manufacturing. For that reason, Guo has presented an approachbased on moment generating function and generalized stochastic PetriNets for performance analysis. In this paper, Buo's approach is extended tothe cases of flexible manufacturing cell including one machining center with a local buffer, AS/RS(Automatic Storage and Retrieval System), set-up station and AGV(Automated Guided Vehicle). Then the performance measures from this approach is compared with simulation. The major advantage ofthis method over existing performance evaluation methods is the ability to compute analytic solutions for performance measures.

  • PDF

A Fuzzy Dispatching Algorithm with Adaptive Control Rule for Automated Guided Vehicle System in Job Shop Environment (AGV시스템에서 적응 규칙을 갖는 퍼지 급송알고리듬에 관한 연구)

  • 김대범
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.1
    • /
    • pp.21-38
    • /
    • 2000
  • A fuzzy dispatching algorithm with adaptable control scheme is proposed for more flexible and adaptable operation of AGV system. The basic idea of the algorithm is prioritization of all move requests based on the fuzzy urgency. The fuzzy urgency is measured by the fuzzy multi-criteria decision-making method, utilizing the relevant information such as incoming and outgoing buffer status, elapsed time of move request, and AGV traveling distance. At every dispatching decision point, the algorithm prioritizes all move requests based on the fuzzy urgency. The performance of the proposed algorithm is compared with several dispatching algorithms in terms of system throughput in a hypothetical job shop environment. Simulation experiments are carried out varying the level of criticality ratio of AGVs , the numbers of AGVs, and the buffer capacities. The rule presented in this study appears to be more effective for dispatching AGVs than the other rules.

  • PDF

Precision Position Controller of Linear Motor-Based Container Transfer System (선형전동기 기반 컨테이너 이송 시스템의 정밀 위치제어)

  • Lee, Young-Jin;Lee, Jin-Woo;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.215-224
    • /
    • 2008
  • In this paper, we introduced a linear motor-based transfer system with an active pid controller which can be replaced with an automated guided vehicle (AGV) for the port automation. This system, which is named LMCTS(liner motor-based container transfer system), is based on PMLSM (permanent magnetic linear synchronous motor) which basically consists of stator modules on the rail and shuttle car. Therefore more progressive and adaptive control mechanisms should be required to control a system with large variation of container weight, the difference of each characteristic of stator modules, a stator module's trouble etc. We introduced an active control mechanism with an online tuning scheme using modified evolutionary strategy. Some computer simulations are implemented to assess the robustness of the proposed system.

Determination of the Optimal Job Sequence on the Flow-Shop Type FMS Considering the AGVs' Entering Interval (AGV 투입간격을 고려한 Flow Shop형 FMS의 최적작업순서 결정)

  • ;;Yang, Dae Yong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.17 no.3
    • /
    • pp.47-57
    • /
    • 1992
  • The purpose of this paper is to improve the operation performance of unit-load Automated Guided Vehicles (AGV's) used as a carrier and mobile workstation in a flow-shop type flexible manufacturing system. An algorithm is developed to determine the optimal job sequence which minimizes the vehicle idle time on the line and the production makespan by the use of the entering interval and travel time between workcenters. An entering times of AGV's and the minimum number of AGV's required are calculated by optimal job sequence. When the numbe rof AGV's is limited, enterling times of AGV's are adjusted to maximize the efficient use of vehicles. A numerical example is given to illustrate the application of the algorithm.

  • PDF

Improvement of LMCTS Position Accuracy using DR-FNN Controller

  • Lee, Jin Woo;Suh, Jin Ho;Lee, Young Jin;Lee, Kwon Soon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.223-230
    • /
    • 2004
  • In this paper, we will introduce a control strategy based on the permanent magnet linear synchronous motor (PMLSM) container transfer system using soft-computing algorithm. Linear motor-based container transport system (LMCTS) is horizontal transfer system for the yard automation, which has been proposed to take the place of automated guided vehicle in the maritime container terminal. LMCTS is considered as that the system is changed its model suddenly and variously by loading and unloading container. The proposed control system is consisted of two DR-FNNs that act the role of controller and system emulator. Consequently, the system had the predictable structure and an ability to adapt for a huge variation of rolling friction, detent force, and sudden changes of its weight by loading and unloading.

A strategic operating model of AGVs in a flexible machining and assembly system (유연가공 및 조립시스템에서의 AGV 운용전략)

  • 양대용;정병희;윤창원
    • Korean Management Science Review
    • /
    • v.11 no.1
    • /
    • pp.23-37
    • /
    • 1994
  • This paper discusses the methodology for the operational performance of unit-load automated guided vehicles(AGVs) in a flow-shop-type flexible machining and assembly systems (FM/AS). Throughout the paper, AGVs are working as a carrier and mobile workstation. For a double-loop FM/AS, in which one loop is dedicated to machining and the other to assembly, three AGV operating strategies are proposed. Considering the entering interval and travel time of AGVs between workcenters, the strategies are developed to determine the best job sequence which minimizes the makespan and vehicle idle time. Entering times of AGVs and the required minimum number of AGVs are obtained on the basis of the best job sequence. When the number of AGVs are limited, entering times of AGVs are adjusted to maximize the utilization of AGVs.

  • PDF

A Design of Steering Controller for AGV using Immune Algorithm (면역 알고리즘을 이용한 AGV의 조향 제어기 설계에 관한 연구)

  • Lee, Chang-Hoon;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2824-2826
    • /
    • 2002
  • Immune system is an evolutionary biological system to protect innumerable foreign materials such as virus, germ cell, and etcetera. Immune algorithm is the modeling of this systems response that has adaptation and reliability when disturbance occur. In this paper, immune algorithm is proposed to control four wheels steering AGV(Automated Guided Vehicle) in container yard. The adaptive immune system is applied to the PID controller. For design the PID controller using immune algorithm, we tune PID parameters by off-line manner, in order to avoid the damage from abrupt control force. Repeatedly, the PID parameters are adjusted to be accurate by on-line fine tuner of immune algorithm. And then the computer simulation result from the viewpoint of yaw rate and lateral displacement are analyzed and compared with result of conventional PID controller.

  • PDF

Intelligent AGV Machine-Learning System based on Self-Driving Simulator for Smart Factory (스마트 팩토리를 위한 자율주행 시뮬레이터 기반 지능형 AGV 머신러닝 시스템)

  • Lee, Se-Hoon;Kim, Ki-Cheol;Mun, Hwan-Bok;Kim, Do-Gyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.17-18
    • /
    • 2017
  • 본 논문은 스마트 팩토리의 중요 요소인 무인반송차(AGV)를 자율 주행시키기 위해 오픈 소스 자율 주행차 시뮬레이터인 udacity를 이용해 머신 러닝시키는 시스템을 개발하였다. 공장의 운행 루트를 자율주행 시뮬레이터의 전경으로 가공하고, 3개의 카메라를 부착시킨 AGV를 운행시키면서 머신 러닝시킨다. AGV를 주행하여 얻어진 여러 학습 데이터를 통해 도출된 결과들을 각각 비교하여 우수한 모델을 선정하고 운행시킨 결과 AGV가 정해진 운행 루트를 정확하게 주행하는 것을 확인하였다. 이를 통해, 가상 운행 환경에서 저비용으로 AGV 운행 학습이 가능하다는 것을 보였다.

  • PDF

Reinforcement Learning based AGV Scheduling (강화학습 기반의 AGV 스케줄링)

  • Lee, Se-Hoon;Kim, Jea-Seung;Yeom, Dae-Hoon;Mun, Hwan-Bok;Lee, Chang-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.23-24
    • /
    • 2018
  • 스마트 팩토리의 핵심 요소 중 하나인 AGV를 운용하기 위해서 스케줄링은 간과할 수 없는 문제이다. 기존의 정적인 휴리스틱 방식은 실시간으로 운용되는 스마트 팩토리에 다소 부적합한 면이 있다. 본 논문에서는 이러한 스케줄링에 관한 문제를 해결하고자 SLAM 기반의 자율주행 AGV를 운용 할 수 있는 3D 가상 환경을 설계하고 해당 환경에서 강화학습을 기반으로 한 스케줄링을 구현해 실시간으로 변화하는 공장에 적합한 동적인 스케줄링을 설계하였다.

  • PDF

An Efficient Buffer Management in a Multi-Cell Flexible Manufacturing Systems (FMS 환경하의 효율적인 버버관리에 관한 연구)

  • 이정표
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.10a
    • /
    • pp.128-132
    • /
    • 1998
  • This research is concerned with buffer management in a multi-cell FMS(Flexible Manufacturing System) with an AGVS(Automated Guided Vehicle System). To reduce blocking and starving caused by breakdowns, variablility in process times, and diversity of part routing, buffer is needed. Due to the high per unit buffer cost, which primarily consists of floor space and equipment cost, the total capacity of buffers in an FMS is very limited. Therefore, proper buffer management can provide a high system efficiency. This paper presents a buffer management model for a multi-cell FMS with an AGVS and a simulation study to compare the proposed model to a conventional buffer management model in a job shop FMS.

  • PDF