• Title/Summary/Keyword: Automated Driving Vehicles

Search Result 90, Processing Time 0.02 seconds

A Study on Improvement of Pedestrian Care System for Cooperative Automated Driving (자율협력주행을 위한 보행자Care 시스템 개선에 관한 연구)

  • Lee, Sangsoo;Kim, Jonghwan;Lee, Sunghwa;Kim, Jintae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.111-116
    • /
    • 2021
  • This study is a study on improving the pedestrian Care system, which delivers jaywalking events in real time to the autonomous driving control center and Autonomous driving vehicles in operation and issues warnings and announcements to pedestrians based on pedestrian signals. In order to secure reliability of object detection method of pedestrian Care system, the inspection method combined with camera sensor with Lidar sensor and the improved system algorithm were presented. In addition, for the occurrence events of Lidar sensors and intelligent CCTV received during the operation of autonomous driving vehicles, the system algorithm for the elimination of overlapping events and the improvement of accuracy of the same time, place, and object was presented.

Study on the Development of Methodology for Evaluation of Driving Safety of Automated Vehicles on Real Roads (실도로 기반 자율주행자동차 주행안전성 평가 방법론 개발 연구)

  • Lee, Youngtaek;Kim, Yejin;Jeong, Harim;Yoo, Hosik;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.280-298
    • /
    • 2021
  • As the development automated vehicles(AV) actively progresses around the world, the demand for a reasonable and systematic evaluation method for AVs is increasing. Research on scenarios, evaluation procedures, and methods for evaluating AVs conducted in simulations and proving ground(PG) is actively conducted internationally. In contrast, methods and procedures for evaluations on real roads are still in their infancy internationally. Therefore, it is necessary to conduct research on evaluating AVs on real roads in preparation for future use of AVs. This study aims to define the basic direction for evaluating the driving safety of AVs on real roads. To this end, the evaluation direction and process of AVs were presented on the real roads, and qualitative and quantitative evaluation indicators were selected to evaluate driving safety. A total of 38 items were selected based on the Road Traffic Act as qualitative evaluation items for evaluating the driving safety of AVs on real roads.

Suitability Evaluation for Simulated Maneuvering of Autonomous Vehicles (시뮬레이션으로 구현된 자율주행차량 거동 적정성 평가 방법론 개발 연구)

  • Jo, Young;Jung, Aram;Oh, Cheol;Park, Jaehong;Yun, Dukgeun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.183-200
    • /
    • 2022
  • A variety of simulation approaches based on automated driving technologies have been proposed to develop traffic operations strategies to prevent traffic crashes and alleviate congestion. The maneuver of simulated autonomous vehicles (AVs) needs to be realistic and be effectively differentiated from the behavior of manually driven vehicles (MVs). However, the verification of simulated AV maneuvers is limited due to the difficulty in collecting actual AVs trajectory and interaction data with MVs. The purpose of this study is to develop a methodology to evaluate the suitability of AV maneuvers based on both driving and traffic simulation experiments. The proposed evaluation framework includes the requirements for the behavior of individual AVs and the traffic stream performance resulting from the interactions with surrounding vehicles. A driving simulation approach is adopted to evaluate the feasibility of maneuvering of individual AVs. Meanwhile, traffic simulations are used to evaluate whether the impact of AVs on the performance of traffic stream is reasonable. The outcome of this study is expected to be used as a fundamental for the design and evaluation of transportation systems using automated driving technologies.

SIMULATOR-BASED HUMAN FACTORS EVALUATION OF AUTOMATED HIGHWAY SYSTEM

  • Cha, D.W.;Park, P.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.625-635
    • /
    • 2006
  • From a viewpoint of human factors, automated highway systems(AHS) can be defined as one of the newly developing human-machine systems that consist of humans(drivers and operators), machines(vehicles and facilities), and environments(roads and roadside environments). AHS will require a changed vehicle control process and driver-vehicle interface(DVI) comparing with conventional driving. This study introduces a fixed-based AHS simulator and provides questionnaire-based human factors evaluation results after three kinds of automated driving speed experiences in terms of road configuration, operation policies, information devices, and overall AHS use. In the simulator, the "shared space-at-grade" concept-based road configuration was virtually implemented on a portion of the Kyungbu highway in Korea, and heads-up display(HUD), AHS information display, and variable message signs(VMS) were installed for appropriate AHS DVI implementation. As the results, the subjects expressed positive opinions on the implemented road configuration, operation policies, and the overall use of AHS. The results of this study would be helpful in developing the road configuration and DVI design guideline as the basic human factors research for the future implementation of AHS.

Intersections Accident Simulation of Automated Vehicles based on Actual Accident Database (국내 실사고 기반 자율주행차 교차로 사고 시뮬레이션)

  • Shin, Yunsik;Park, Yohan;Shin, Jae-Kon;Jeong, Jayil
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.106-113
    • /
    • 2021
  • In this study, The behavior of an autonomous vehicle in an intersection accident situation is predicted. Based on a representative intersection accident situation from actual intersection accident database, simulation was performed by applying the automatic emergency braking algorithm used in the autonomous driving system. Accident reconstruction was performed based on the accident report of the representative accident situation. After applying the autonomous driving system to the accident-related vehicle, the tendency of intersection accidents that may occur in autonomous vehicles was identified and analyzed.

Utilization of Rigid Barrier to Simulate Car to Car Crash of Two Identical Vehicles (고정벽을 활용한 차대차 경사충돌 재현)

  • Junsuk, Bae;Ho, Kim;Young Myoung, So
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.21-26
    • /
    • 2022
  • Commercial use of autonomous vehicles is to come soon. So far most of responsibility of the accident is on the human driver with conventional vehicles whereas that will be on the car OEM and transportation related organizations with autonomous vehicles, which asks car OEM's and government to do vast study of car crash in various conditions. Test protocols need amendment and to be newly enacted to reflect new findings from the study aforementioned. Rigid stationary barrier and moving or stationary deformable barrier as well as car to car test which is same as actual accident can be utilized to simulate the crash happening on the road. Among those 3 test methods, rigid stationary barrier is most economic and has good repeatability. Limitation as well as advantage of the rigid stationary barrier is studied through comparison between car to car crash and oblique rigid barrier crash.

Selecting a Landmark for Repositioning Automated Driving Vehicles in a Tunnel (자율주행 차량의 터널내 측위오차 보정 지원시설 선정)

  • Kim, Hyoungsoo;Kim, Youngmin;Park, Bumjin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.200-209
    • /
    • 2018
  • This study proposed a method to select existing facilities as a landmark in order to reset accumulated errors of dead reckoning in a tunnel difficult to receive GNSS signals in automated driving. First, related standards and regulations were reviewed in order to survey 'variety' on shapes and installation locations as a feature of facilities. Second, 'recognition' on facilities was examined using image and Lidar sensors. Last, 'regularity' in terms of installation locations and intervals was surveyed through related references. The results of this study selected a fire fighting box / lamp (50m), an evacuation corridor lamp (300m), a lane control system (500m), a maximum / minimum speed limit sign and a jet fan as a candidate landmark to reset positioning errors. Based on those facilities, it was determined that error correction was possible. The results of this study are expected to be used in repositioning of automated driving vehicles in a tunnel.

Study on Map Building Performance Using OSM in Virtual Environment for Application to Self-Driving Vehicle (가상환경에서 OSM을 활용한 자율주행 실증 맵 성능 연구)

  • MinHyeok Baek;Jinu Pahk;JungSeok Shim;SeongJeong Park;YongSeob Lim;GyeungHo Choi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.42-48
    • /
    • 2023
  • In recent years, automated vehicles have garnered attention in the multidisciplinary research field, promising increased safety on the road and new opportunities for passengers. High-Definition (HD) maps have been in development for many years as they offer roadmaps with inch-perfect accuracy and high environmental fidelity, containing precise information about pedestrian crossings, traffic lights/signs, barriers, and more. Demonstrating autonomous driving requires verification of driving on actual roads, but this can be challenging, time-consuming, and costly. To overcome these obstacles, creating HD maps of real roads in a simulation and conducting virtual driving has become an alternative solution. However, existing HD maps using high-precision data are expensive and time-consuming to build, which limits their verification in various environments and on different roads. Thus, it is challenging to demonstrate autonomous driving on anything other than extremely limited roads and environments. In this paper, we propose a new and simple method for implementing HD maps that are more accessible for autonomous driving demonstrations. Our HD map combines the CARLA simulator and OpenStreetMap (OSM) data, which are both open-source, allowing for the creation of HD maps containing high-accuracy road information globally with minimal dependence. Our results show that our easily accessible HD map has an accuracy of 98.28% for longitudinal length on straight roads and 98.42% on curved roads. Moreover, the accuracy for the lateral direction for the road width represented 100% compared to the manual method reflected with the exact road data. The proposed method can contribute to the advancement of autonomous driving and enable its demonstration in diverse environments and on various roads.

Method of Multiple Scenario Transformation and Simulation Based Evaluation for Automated Vehicle Assessment (자율주행자동차 평가를 위한 다중 시나리오 변환과 시뮬레이션 기반 평가 방법)

  • Donghyo Kang;Inyoung Kim;Seong-Woo Cho;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.230-245
    • /
    • 2023
  • The importance of evaluating the safety of Automated Vehicles (AV) is increasing with the advances in autonomous driving technology. Accordingly, an evaluation scenario that defines in advance the situations AV may face while driving is being used to conduct efficient stability evaluation. On the other hand, the single scenarios currently used in conventional evaluations address limited situations within short segments. As a result, there are limitations in evaluating continuous situations that occur on real roads. Therefore, this study developed a set of multiple scenarios that allow for continuous evaluation across entire sections of roads with diverse geometric structures to assess the safety of AV. In particular, the conditions for connecting individual scenarios were defined, and a methodology was proposed for developing concrete multiple scenarios based on the scenario evaluation procedure of the PEGASUS project. Furthermore, a simulation was performed to validate the practicality of these multiple scenarios.

A Study of the Trend Analysis of National Automated Vehicle Research Using NTIS Data (NTIS 데이터를 이용한 국내 자율주행 연구 동향 분석에 관한 연구)

  • In-Seok Jeong;Jiwon Kang;Jongdeok Lee;Sangmin Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.147-163
    • /
    • 2023
  • Recently, there has been an increase in the research and development of automated vehicles worldwide. Research focused on automated vehicles in Korea is steadily progressing as a national R&D project. Since automated driving technology comprises diverse technology fields, it is necessary to identify the current position of the research. In this study, we propose a methodology for analyzing research trends using the NTIS data. In addition, we review the effectiveness of the currently developed research trend methodology by deriving primary keywords and major topics using the proposed method. We expect that the methodology developed in this study can be applied to identify and analyze future automated vehicle research trends.