• Title/Summary/Keyword: Auto-regressive

Search Result 246, Processing Time 0.029 seconds

A Study on Flood Prediction without Rainfall Data (강우 데이터를 쓰지 않는 홍수예측법에 관한 연구)

  • 김치홍
    • Journal of the Korean Professional Engineers Association
    • /
    • v.18 no.2
    • /
    • pp.1-5
    • /
    • 1985
  • In the flood prediction research, it is pointed out that the difficulty of flood prediction is the frequently experienced overestimation of flood peak. That is caused by the rainfall prediction difficulty and the nonlinearity of hydrological phenomena. Even though the former reason will remain still unsolved, but the latter one can be possibly resolved the method of the AMRA (Auto Regressive Moving Average) model for each runoff component as developed by Dr. Hino and Dr. Hasebe. The principle of the method consists of separating though the numerical filters the total runoff time series into long-term, intermediate and short-term components, or ground water flow, interflow, and surface flow components. As a total system, a hydrological system is a non-linear one. However, once it is separated into two or three subsystems, each subsystem may be treated as a linear system. Also the rainfall components into each subsystem a estimated inversely from the runoff component which is separated from the observed flood. That is why flood prediction can be done without rainfall data. In the prediction of surface flow, the Kalman filter will be applicable but this paper shows only impulse function method.

  • PDF

RELATIONSHIP BETWEEN FABRIC SOUND PARAMETERS AND SUBJECTIVE SENSATION

  • Yi, Eunjou;Cho, Gilsoo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.138-143
    • /
    • 2000
  • In order to investigate the relationship between fabric sound parameters and subjective sensation, each sound from 60 fabrics was recorded and analyzed by Fast Fourier transform. Level pressure of total sound (LPT), three coefficients (ARC, ARF, ARE) of auto regressive models, loudness (Z), and sharpness (Z) by Zwickers model were estimated as sound parameters. For subjective evaluation, seven sensation (softness, loudness, sharpness, clearness, roughness, highness, and pleasantness) was rated by both semantic differential scale (SDS) and free modulus magnitude estimation (FMME). As the results, the ARC values were positively proportional to both LPT and loudness (Z) values. In both of SDS and FMME, softness, clearness, and pleasantness were negatively correlated with loudness, sharpness, roughness, and highness. In regression models, softness and clearness by FMME were negatively affected by LPT뭉 ARC, while loudness, sharpness, roughness, and highness were positively expected. Regression models for pleasantness showed low values for R2.

  • PDF

On A New Framework of Autoregressive Fuzzy Time Series Models

  • Song, Qiang
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.357-368
    • /
    • 2014
  • Since its birth in 1993, fuzzy time series have seen different classes of models designed and applied, such as fuzzy logic relation and rule-based models. These models have both advantages and disadvantages. The major drawbacks with these two classes of models are the difficulties encountered in identification and analysis of the model. Therefore, there is a strong need to explore new alternatives and this is the objective of this paper. By transforming a fuzzy number to a real number via integrating the inverse of the membership function, new autoregressive models can be developed to fit the observation values of a fuzzy time series. With the new models, the issues of model identification and parameter estimation can be addressed; and trends, seasonalities and multivariate fuzzy time series could also be modeled with ease. In addition, asymptotic behaviors of fuzzy time series can be inspected by means of characteristic equations.

Automated data interpretation for practical bridge identification

  • Zhang, J.;Moon, F.L.;Sato, T.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.433-445
    • /
    • 2013
  • Vibration-based structural identification has become an important tool for structural health monitoring and safety evaluation. However, various kinds of uncertainties (e.g., observation noise) involved in the field test data obstruct automation system identification for accurate and fast structural safety evaluation. A practical way including a data preprocessing procedure and a vector backward auto-regressive (VBAR) method has been investigated for practical bridge identification. The data preprocessing procedure serves to improve the data quality, which consists of multi-level uncertainty mitigation techniques. The VBAR method provides a determinative way to automatically distinguish structural modes from extraneous modes arising from uncertainty. Ambient test data of a cantilever beam is investigated to demonstrate how the proposed method automatically interprets vibration data for structural modal estimation. Especially, structural identification of a truss bridge using field test data is also performed to study the effectiveness of the proposed method for real bridge identification.

Analysis of PM10 Concentration using Auto-Regressive Error Model at Pyeongtaek City in Korea (자기회귀오차모형을 이용한 평택시 PM10 농도 분석)

  • Lee, Hoon-Ja
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.358-366
    • /
    • 2011
  • The purpose of this study was to analyze the monthly and seasonal PM10 data using the Autoregressive Error (ARE) model at the southern part of the Gyeonggi-Do, Pyeongtaek monitoring site in Korea. In the ARE model, six meteorological variables and four pollution variables are used as the explanatory variables. The six meteorological variables are daily maximum temperature, wind speed, amount of cloud, relative humidity, rainfall, and global radiation. The four air pollution variables are sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), carbon monoxide (CO), and ozone ($O_3$). The result shows that monthly ARE models explained about 17~49% of the PM10 concentration. However, the ARE model could be improved if we add the more explanatory variables in the model.

Nuclear Reactor Modeling in Load Following Operations for UCN 3 with NARX Neural Network - (NARX 신경회로망을 이용한 부하추종운전시의 울진 3호기 원자로 모델링)

  • Lee, Sang-Kyung;Lee, Un-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.21-23
    • /
    • 2005
  • NARX(Nonlinear AutoRegressive with eXogenous input) neural network was used for prediction of nuclear reactor behavior which was influenced by control rods in short-term period and also by xenon and boron in long-term period in load following operations. The developed model was designed to predict reactor power, xenon worth and axial offset with different burnup rates when control rod and boron were adjusted in load following operations. Data of UCN 3 were collected by ONED94 code. The test results presented exhibit the capability of the NARX neural network model to capture the long term and short term dynamics of the reactor core and seems to be utilized as a handy tool for the use of a plant simulation.

  • PDF

On-line Optimal EMS Implementation for Distributed Power System

  • Choi, Wooin;Baek, Jong-Bok;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.33-34
    • /
    • 2012
  • As the distributed power system with PV and ESS is highlighted to be one of the most prominent structure to replace the traditional electric power system, power flow scheduling is expected to bring better system efficiency. Optimal energy management system (EMS) where the power from PV and the grid is managed in time-domain using ESS needs an optimization process. In this paper, main optimization method is implemented using dynamic programming (DP). To overcome the drawback of DP in which ideal future information is required, prediction stage precedes every EMS execution. A simple auto-regressive moving-average (ARMA) forecasting followed by a PI-controller updates the prediction data. Assessment of the on-line optimal EMS scheme has been evaluated on several cases.

  • PDF

SEQUENTIAL ALGORITHMS FOR DYNAMIC STRUCTURAL IDENTIFICATION (구조물의 동특성 추정을 위한 순차적 기법)

  • Yun, C-B.;Lee, H-J.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.13-18
    • /
    • 1992
  • 구조물의 동적실험을 통하여 얻은 하중과 거동에 대한 시간기록을 분석하여, 구조계의 동 특성계수들을 추정하는 기법에 대하여 연구하였다. 실험과정 및 해석모형과정의 오차를 고려하기 위하여, 하중기록과 구조거동기록간의 관계를 추계론적 자동회기 및 이동평균모형(Stochastic Auto-Regressive and Moving-Average (ARMAX) Model)음 사용하여 모형화하였다. 미지의 ARMAX 계수행렬들은 순차적 예측오차기법을 사용하여 추정하였으며, 계수추정기법의 효율성을 증진시키기 위하여, Exponential Data Weighting, Global Data Weighting 및 Square Root Estimation 기법을 활용하였다. 다중거동측정계의 예제해석을 통하여 이의 효율성을 분석하였다.

  • PDF

Predictive analysis of the Number of Cataract Surgeries (백내장 수술건수 추이예측 분석)

  • Jeong, Ji-Yun;Jeong, Jae-Yeon;Lee, Hae-Jong
    • Korea Journal of Hospital Management
    • /
    • v.25 no.2
    • /
    • pp.69-75
    • /
    • 2020
  • Purposes: This study aims to investigate the number of cataract surgeries and predict future trends using 13-year data. Methodology: Trends investigation and comparison of prediction methods was conducted to determine better prediction model using Major Surgery Statistics from Korean Statistical Information Service in 2006-2018. ARIMA(Auto Regressive Integrated Moving Average) was selected and prediction was conducted using R program. Findings: As a results, the number of surgeries will continue to increase. The trends was predicted to increase during January-April, and it declined over time and was the lowest in August. Pratical Implications: Therefore, it is necessary that management will be needed by continuously investigating and predicting the demand and trend for surgery to prepare an alternative to the increase.

A Study on digital Controller for Power System Stabilization (전력 계통 안정화 제어를 위한 이산시간 제어기 설계)

  • Park, Young-Moon;Hyun, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.135-137
    • /
    • 1992
  • A new algorithm for self-tuning digital controller is proposed. The system to be controlled is identified on line in auto-regressive-moving-average(ARMA) form via recursive least mean square method. The control law is obtained from the minimization of an objective function. The proposed objective function is similar to that of Generalized Minimum Variance(GMV) method but modified to lessen the overshoot and to avoid numerical divergence problem. This algorithm is applied to the power system stabilization and the comparison of the proposed method with a conventional power system stabilizer(PSS) is presented.

  • PDF