• 제목/요약/키워드: Auto-body panel stamping

검색결과 30건 처리시간 0.031초

차체 스탬핑 해석에 등가 드로우비드 모델의 적용 (Application of Equivalent Drawbead Model to Auto-Body Stamping Analysis)

  • 이자연;문성준;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.389-392
    • /
    • 2009
  • The application of an equivalent drawbead model(EDM) for sheet metal forming analysis, which adopts the forces instead of complex geometries in modeling the drawbead, to the numerical simulation of auto-panel stamping process is introduced in this study. In terms of the thinning and draw-in, better agreement with experimental measurements was found in EDM than in commercial code models so that the excellence of EDM in the accuracy of drawbead forces for the simulation of auto-body stampings was revealed.

  • PDF

스탬핑 프레스 금형 다이페이스 설계 해석 시스템 (Design Analysis System for Dieface of Stamping Press Dies)

  • 금영탁;정승훈;이완우;박성일;김준환
    • 소성∙가공
    • /
    • 제9권6호
    • /
    • pp.567-573
    • /
    • 2000
  • An analysis system for evaluating the design of dieface of stamping press dies is developed. The die design analysis system interfaced with CATIA via universal or NASTRAN data format provides the design information such as binder-wrap, punch contact status, section length change ratio, wrinkle symptom etc., which are crucial in predicting the defects of initial shape of the sheet in the dieface design stage. The graphic post-processor of developed system which displays 3-dimensional shapes of tool and die and analysis results, helps the interpretation of design evaluation. The dieface design analysis system was tested in draw dies of front floor panel and quarter panel of auto-body in order to verify the usefulness and validity of the system The examples show that the developed system would be a good tool in evaluating dieface designs.

  • PDF

드로우비드 전문모델에 관한 연구 (Study on the Drawbead Expert Models)

  • 김준환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.26-29
    • /
    • 2000
  • drawbead expert models are developed for calculating drawbead restraining force and drawbead-exit thinnings which are boundary conditions in FEM stamping simulation employing the linear multiple regression method by which the deviation of drawing characteristics between drawing test and mathematical model is minimized. In order to show the efficiency and accuracy of an expert drawbead model a finite element simulation of auto-body panel stamping is carried out. The finite element simulation shows that the expert drawbead model provides the accurate solution guarantees the stable convergence and the merit in the computation time.

  • PDF

Hydro-forming 공정을 위한 동적-외연적 유한요소해석 (A Dynamic-explicit Finite Element Analysis for Hydro-forming Process)

  • 정동원;황재신
    • 동력기계공학회지
    • /
    • 제8권3호
    • /
    • pp.23-29
    • /
    • 2004
  • In this paper, a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of Hydro-forming processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Hydro-forming process for auto-body panel forming is analyzed by using dynamic-explicit finite element method. Further, the simulated results of the Hydro-forming processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

마그네슘 합금 AZ31B 판재를 이용한 자동차 하이브리드 후드 개발 프로세스 (Process Development for Automotive Hybrid Hood using Magnesium Alloy AZ31B Sheet)

  • 장동환
    • 소성∙가공
    • /
    • 제20권2호
    • /
    • pp.160-166
    • /
    • 2011
  • Weight reduction while maintaining functional requirements is one of the major goals in the automotive industry. The use of lightweight magnesium alloys offers great potential for reducing weight because of the low density of these alloys. However, the formability and the surface quality of the final magnesium alloy product for auto-body structures are not acceptable without a careful optimization of the design parameters. In order to overcome some of the main formability limitations in the stamping of magnesium alloys, a new approach, the so-called "hybrid technology", has been recently proposed for body-in-white structural components. Within this approach, necessary level of mechanical joining can be obtained through the use of lightweight material-steel adhesion promoters. This paper presents the development process of an automotive hybrid hood assembly using magnesium alloy sheets. In the first set of material pairs, the selected materials are magnesium alloy AZ31B alloy and steel(SGCEN) as inner and outer panels, respectively. In order to optimize the design of the inner panel, the stamping process was analyzed with the finite element method (FEM). Laser welding by CW Nd:YAG were used to join the magnesium alloy sheets. Based on the simulation results and mechanical test results of the joints, the determination of die design variables and their influence on formability were discussed. Furthermore, a prototype based on the proposed design was manufactured and the static stiffness test was carried out. The results demonstrate the feasibility of the proposed hybrid hood with a weight reduction of 25.7%.

차체조립과 자동용접 (Motor vehicle body assembly and auto-welding)

  • 이승복
    • 오토저널
    • /
    • 제3권1호
    • /
    • pp.19-26
    • /
    • 1981
  • 자동차제조에 있어서의 용접은 신뢰성 양산과 생력화에 대응하여 접합 조립하는 방법으로 특이한 분야를 형성하여 발전되었다. 예를 들면, 자동차의 생산은 기본적으로 양산체제를 갖추고 있 어서, 일반적으로 노동집약형 산업이라고 불리어지며 그 제조공정을 보면 stamping press 공정과 같이 용접공정도 비교적 장치산업적인 분야로 빠르게 자동화나 성인화 내지 무인화로 진행되고 있다. 자동차용접은 사람이 portable spot welder로 한점씩 용접하지만 양산에 대비한 합리화와 안정화를 위하여 다점용접 (multi spot weld)라는 자동화공법의 도입이 불가피하며 금일의 자 동차생산에 있어서 상식화가 되고 있다. 이것은 한개의 차체라면 차형의 대조 또는 press panel의 수에 따라 차이가 조금 있으나 약 4-5 천점의 점용접이 필요하기 때문에 여러 가지 반송장치와 조합하여 대규모의 line설비로 발전되어 가고 있다. 이와 같이 용접공정의 자동화는 생산성을 높이는 반면에 전용성이 높기 때문에 설계변경에 대한 초기투자의 용접설비 대부분을 갱신하여야 하는 새로운 투자의 필요문제가 증대되었다. 이러한 전용설비에 대한 유연성을 가미한 자동차로 지향되어, 그 한 방법으로 산업용 robot가 도입되었다. 근래에 와서는 자동차제조에 있어서 새 로운 용접기술을 합리적으로 효과있게 적용하는 기술이 금후의 연구과제라 하겠다.

  • PDF

용접부를 고려한 레이저 합체박판 성형공정의 3차원 유한요소 해석 (3-D FEM Analysis of Forming Process for Laser Welded Blank Considering Welded Zone)

  • 금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 추계학술대회논문집
    • /
    • pp.14-17
    • /
    • 1999
  • The finite element formulation is developed for predicting strain distributions and weld line movements in the forming processes of laser welded blank. The welded zone(WZ) is modelled with several narrow finite elements whose material characteristics are analytically obtained from those of base metals based on the tensile tests. In order to show the reliability and effectiveness of weld element the forming process of hemispherical dome stretching and auto-body door inner panel stamping are simulated FEM predictions show good agreements with experimental observations.

  • PDF

레이저 용접 테일러드 블랭크의 용접부 물성평가 및 박판성형 해석에 적용 (Evaluation of Material Properties of Welding Zone in Laser Welded Blank and Its Application to Sheet Metal Forming Analysis)

  • 구본영;금영탁
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 1999년도 춘계학술발표대회 논문개요집
    • /
    • pp.29-32
    • /
    • 1999
  • The material properties of laser welding zone such as strength coefficient, work-hardening exponent, and plastic anisotropic ratio are analytically obtained from those of base metals based on the tensile tests. . The finite element formulation is developed for predicting strain distributions and weld line movements in the forming processes of laser welded blank. The welding zone(WZ) is modelled with the several, narrow finite elements whose material characteristics are based on the experimental results and the analytical equations. In order to show an application of the developed weld element the stamping process of auto-body door inner panel is simulated. FEM predictions are compared and showed good agreements with experimental observations.

  • PDF

박판 스탬핑 공정의 주름발생 예측에 관한 연구 (Study on the Wrinkling Prediction in Sheet Metal Stamping Processes)

  • 황보원;금영탁
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.131-142
    • /
    • 2001
  • A wrinkling is the instability phenomenon influenced by material properties, shape geometry, forming conditions, stress state, etc. The wrinkling is considered as a critical defect in appearance of product. Many wrinkling prediction methods using thickness strain distribution and farming analysis have been proposed. The wrinkling, however, is not easily predicted precisely by these methods. In this study, the region in the biaxial plane stress state is modeled with a rectangular plate introducing the effective dimension, and critical stress values for the wrinkling are calculated. Prediction index for the wrinkling is then evaluated by normalizing the actual stress with respect to the critical stress. In order to show the validity and efficiency of the method proposed, the wrinkling prediction for a squared sheet in the uniaxial tensile stress and auto-body front finder panel is performed.

  • PDF

리어 힌지 패널 스템핑의 유한요소해석 (Finite Element Analysis of Auto-body Panel Stamping)

  • 정동원;이장희;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 자동차부품 제작기술의 진보
    • /
    • pp.97-109
    • /
    • 1996
  • In the present work computations are carried out for analysis of complicated sheet metal forming process such as forming of a rear hinge. Finite element formulation using dynamic explicit time integration scheme and step-wise combined Implicit/Explicit scheme are introduced for numerical analysis of sheet metal forming process. The rigid-plastic finite element method based on membrane elements has long been employed as a useful numerical technique for the analysis of sheet metal forming because of its time effectiveness. The explicit scheme in general use is based on the elastic-plastic modelling of material requiring large computation time. In finite element simulation of sheet metal forming processes, the robustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry and boundary conditions. The implicit scheme employs a more reliable and rigorous scheme in considering the equilibrium at each step of deformation, while in the explicit scheme the problem of convergency is eliminated at the cost of solution accuracy. The explicit approach and the implicit approach have merits and demerits, respectively. In order to combine the merits of these two methods a step-wise combined implicit/explicit scheme has been developed.