The ionosphere has been monitored by ionosondes for over five decades since the 1960s in Korea. An ionosonde typically produces an ionogram that displays radio echoes in the frequency-range plane. The trace of echoes in the plane can be read either manually or automatically to derive useful ionospheric parameters such as foF2 (peak frequency of the F2 layer) and hmF2 (peak height of the F2 layer). Monitoring of the ionosphere should be routinely performed in a given time cadence, and thus, automatic scaling of an ionogram is generally executed to obtain ionospheric parameters. However, an auto-scaling program can generate undesirable results that significantly misrepresent the ionosphere. In order to verify the degree of misrepresentation by an auto-scaling program, we performed manual scaling of all 35,136 ionograms measured at Jeju ($33.43^{\circ}N$, $126.30^{\circ}E$) throughout 2012. We compared our manually scaled parameters (foF2 and hmF2) with auto-scaled parameters that were obtained via the ARTIST5002 program. We classified five cases in terms of the erroneous scaling performed by the program. The results of the comparison indicate that the average differences with respect to foF2 and hmF2 between the two methods approximately correspond to 0.03 MHz and 4.1 km, respectively with corresponding standard deviations of 0.12 MHz and 9.58 km. Overall, 36 % of the auto-scaled results differ from the manually scaled results by the first decimal number. Therefore, future studies should be aware of the quality of auto-scaled parameters obtained via ARTIST5002. Hence, the results of the study recommend the use of manually scaled parameters (if available) for any serious applications.
In the present work a finite element formulation using dynamic explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and direct trial-and-error method. In this work, for economic analysis the faster punch velocity and the mass scaling method are introduced. To investigate the effects of punch velocity and mass scaling, the various values of punch velocity and the various mass scalings are used for numerical analysis. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oil pan and a fuel tank.
Sudden enhancements of daytime NmF2 appeared in Anyang ionosonde data during summer seasons in 2006-2007. In order to investigate the causes of this unusual enhancement, we compared Anyang NmF2's with the total electron contents (GPS TECs) observed at Daejeon, and also with ionosonde data at at mid-latitude stations. First, we found no similar increase in Daejeon GPS TEC when the sudden enhancements of Anyang NmF2 occurred. Second, we investigated NmF2's observed at other ionosonde stations that use the same ionosonde model and auto-scaling program as the Anyang ionosonde. We found similar enhancements of NmF2 at these ionosonde stations. Moreover, the analysis of ionograms from Athens and Rome showed that there were sporadic-E layers with high electron density during the enhancements in NmF2. The auto-scaling program (ARTIST 4.5) used seems to recognize sporadic-E layer echoes as a F2 layer trace, resulting in the erroneous critical frequency of F2 layer (foF2). Other versions of the ARTIST scaling program also seem to produce similar erroneous results. Therefore we conclude that the sudden enhancements of NmF2 in Anyang data were due to the misrecognition of sporadic-E echoes as a F-layer by the auto-scaling program. We also noticed that although the scaling program flagged confidence level (C-level) of an ionogram as uncertain when a sporadic-E layer occurs, it still automatically computed erroneous foF2's. Therefore one should check the confidence level before using long term ionosonde data that were produced by an auto-scaling program.
최근 네트워크 서비스 관리의 복잡성을 줄이기 위해 새로운 네트워크 인프라가 등장하고 있다. NFV(Network Function Virtualization) 기술은 하드웨어 기반의 네트워크 장비에 가상화를 적용하여, 유연성 있는 네트워크 서비스를 제공한다. 네트워크 서비스는 Firewall, Parental Control (PC)과 같은 일련의 VNF (Virtual Network Function)로 구성된다. NFV 기술을 기존의 네트워크 환경과 통합시키는 경우 해결해야 할 난제가 존재한다. 기존 네트워크는 복잡성이 요구되며 많은 양의 트래픽을 다루어야 한다. 사용자가 요청한 네트워크 서비스의 높은 트래픽 로드로 인해 패킷 손실이 발생할 수 있다. 본 논문에서는 Zabbix 모니터링 시스템을 활용해 VNF 로드 기반의 Auto-scaling을 제안한다. 이를 통해 네트워크 서비스의 자원 효율성을 향상시키고 패킷 손실 비율을 줄일 수 있다.
5G 네트워크의 핵심 기술 중 하나인 네트워크 기능 가상화 (NFV, Network Function Virtualization)는 유연하고 민첩한 네트워크 구축 및 운용을 가능하게 만드는 장점이 있다. 하지만, 한편으로는 수 많은 가상 자원을 생성하기 때문에 네트워크 관리를 복잡하게 만드는 원인이 된다. 일반적으로, NFV 환경에서는 가상 네트워크 기능(VNF, Virtual Network Function)들로 구성된 서비스 펑션 체이닝 (SFC, Service Function Chaining)을 통해 일련의 네트워크 기능들을 트래픽에 적용한다. 따라서 서비스 요구사항을 만족시킬 수 있도록 동적으로 SFC에 알맞은 양의 컴퓨팅 자원 또는 인스턴스를 할당하는 것이 필요하다. 본 논문에서는 SFC에서 적절한 수의 VNF 인스턴스를 운용하기 위해 강화학습 알고리즘의 하나인 Deep Q-Networks (DQN)을 이용한 Auto-scaling 방법을 제안한다. 제안하는 방법은 SFC로 유입되는 트래픽의 증감에 따라 SFC를 구성하는 다계층 (Multi-tier) 구조에서 스케일링(Scaling)이 필요한 계층을 선택하고, 스케일링을 통해 효과적으로 VNF 인스턴스들 개수를 조절한다.
오토-스케일링은 클라우드 컴퓨팅 기술이 ICT 핵심 기반 기술로 자리 잡을 수 있는 가장 중요한 기능 중 하나로써 사용자나 서비스 요청의 폭발적인 증가 또는 감소에도 시스템 자원과 서비스 인스턴스를 적절하게 확장 또는 축소하여 상황에 맞는 서비스의 안정성과 비용 대비 효과를 향상하는 기술이다. 하지만 특정 시스템 자원에 대한 모니터링 시점의 단일 메트릭 데이터를 기반으로 정책이 수립·실행되다 보니 이미 서비스에 영향이 있거나 실제 필요한 서비스 인스턴스를 세밀하게 관리하지 못하는 문제점이 있다. 이러한 문제점을 해결하기 위해서 본 논문에서는 시스템 자원과 서비스 응답시간을 다변량 시계열 분석 모델을 사용하여 분석·예측하고 이를 기반으로 오토-스케일링 정책을 수립하는 방안을 제안한다. 이를 검증하기 위해 쿠버네티스 환경에서 커스텀 스케쥴러를 구현하고, 실험을 통해 쿠버네티스 기본 오토-스케일링 방식과 비교 분석한다. 제안하는 기법은 시스템 자원과 응답시간 사이의 영향에 기반한 예측 데이터를 활용하여 예상되는 상황에 대한 오토-스케일링을 선제적으로 실행함으로써 시스템의 안정성을 확보하고 서비스 품질이 저하되지 않는 범위내에서 필요한 만큼의 인스턴스를 세밀하게 관리할 수 있는 결과를 보인다.
This study examined user preferences toward transportation modes in Seoul. Two multidimensional scaling models, the ideal point and vector models, were applied to data on mode preferences of 114 adults in the metropolitan area. While both models produced fairly similar results, the vector model performed slightly better than the other in terms of interpretability of the results. The transport attributes elicited are comfort, flexibility, travel cost, travel time, privacy, and safety; among which comfort is salient most. The comfort variable is a multi-faceted attribute in nature. The variations of attribute preferences are most significant between the gender groups as well as worker/nonworker groups. In particular, male workers, female workers and female nonworkers form three distinctive market segments. An unidimensional scaling of the preference data reveals that subway, auto-driver, and subscription bus modes are preferred most, whereas motorcycle and bicycle least. The other modes of express bus, taxt, auto-passenger, bus and walk rank intermediately. An examination of how preference orders vary among modal groups hints that users align their stated attitudes to their choice in order to reduce cognitive dissonance.
This paper presents an autotuning algorithm of scaling factor in order to improve system performance. We define the scaling factor of fuzzy controller as a function of error and error change. This function is tuned by the output of performance evaluation level utilizing the error of overshoot and rising time. Simulation results show that the proposed algorithm has good tuning performance for a system with parameter change.
This paper proposes a new hybrid genetic algorithm for auto-tuning fuzzy controllers improving the performance. In general, fuzzy controllers use pre-determined moderate membership functions, fuzzy rules, and scaling factors, by trial and error. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controllers, using a hybrid genetic algorithm. The object of the proposed algorithm is to promote search efficiency by the hybrid optimization technique. The proposed hybrid genetic algorithm is based on both the standard genetic algorithm and a modified gradient method. If a maximum point is not be changed around an optimal value at the end of performance during given generation, the hybrid genetic algorithm searches for an optimal value using the the initial value which has maximum point by converting the genetic algorithms into the MGM(Modified Gradient Method) algorithms that reduced the number of variables. Using this algorithm is not only that the computing time is faster than genetic algorithm as reducing the number of variables, but also that can overcome the disadvantage of genetic algoritms. Simulation results verify the validity of the presented method.
This paper propose a new hybrid genetic algorithm for auto-tunig auzzy controller improving the performance. In general, fuzzy controller used pre-determine d moderate membership functions, fuzzy rules, and scaling factors, by trial and error. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controller, using hybrid genetic algorithms. The object of the proposed algorithm is to promote search efficiency by overcoming a premature convergence of genetic algorithms. Hybrid genetic algorithm is based on genetic algorithm and modified gradient method. Simulation results verify the validity of the presented method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.