• Title/Summary/Keyword: Auto recognition

Search Result 175, Processing Time 0.021 seconds

Korean Digit Recognition Using Cepstrum coefficients and Frequency Sensitive Competitive Learning (Cepstrum 계수와 Frequency Sensitive Competitive Learning 신경회로망을 이용한 한국어 인식.)

  • Lee, Su-Hyuk;Cho, Seong-Won;Choi, Gyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.329-331
    • /
    • 1994
  • In this paper, we present a speaker-dependent Korean Isolated digit recognition system. At the preprocessing step, LPC cepstral coefficients are extracted from speech signal, and are used as the input of a Frequency Sensitive Competitive Learning(FSCL) neural network. We carried out the postprocessing based on the winning-neuron histogram. Experimetal results Indicate the possibility of commercial auto-dial telephones.

  • PDF

Evaluation Method of Structural Safety using Gated Recurrent Unit (Gated Recurrent Unit 기법을 활용한 구조 안전성 평가 방법)

  • Jung-Ho Kang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.183-193
    • /
    • 2024
  • Recurrent Neural Network technology that learns past patterns and predicts future patterns using technology for recognizing and classifying objects is being applied to various industries, economies, and languages. And research for practical use is making a lot of progress. However, research on the application of Recurrent Neural Networks for evaluating and predicting the safety of mechanical structures is insufficient. Accurate detection of external load applied to the outside is required to evaluate the safety of mechanical structures. Learning of Recurrent Neural Networks for this requires a large amount of load data. This study applied the Gated Recurrent Unit technique to examine the possibility of load learning and investigated the possibility of applying a stacked Auto Encoder as a way to secure load data. In addition, the usefulness of learning mechanical loads was analyzed with the Gated Recurrent Unit technique, and the basic setting of related functions and parameters was proposed to secure accuracy in the recognition and prediction of loads.

Design of a Quantization Algorithm of the Speech Feature Parameters for the Distributed Speech Recognition (분산 음성 인식 시스템을 위한 특징 계수 양자화 방식 설계)

  • Lee Joonseok;Yoon Byungsik;Kang Sangwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.217-223
    • /
    • 2005
  • In this paper, we propose a predictive block constrained trellis coded quantization (BC-TCQ) to quantize cepstral coefficients for the distributed speech recognition. For Prediction of the cepstral coefficients. the 1st order auto-regressive (AR) predictor is used. To quantize the prediction error signal effectively. we use a BC-TCQ. The performance is compared to the split vector quantizers used in the ETSI standard, demonstrating reduction in the cepstral distance and computational complexity.

Development of a Hybrid Deep-Learning Model for the Human Activity Recognition based on the Wristband Accelerometer Signals

  • Jeong, Seungmin;Oh, Dongik
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.9-16
    • /
    • 2021
  • This study aims to develop a human activity recognition (HAR) system as a Deep-Learning (DL) classification model, distinguishing various human activities. We solely rely on the signals from a wristband accelerometer worn by a person for the user's convenience. 3-axis sequential acceleration signal data are gathered within a predefined time-window-slice, and they are used as input to the classification system. We are particularly interested in developing a Deep-Learning model that can outperform conventional machine learning classification performance. A total of 13 activities based on the laboratory experiments' data are used for the initial performance comparison. We have improved classification performance using the Convolutional Neural Network (CNN) combined with an auto-encoder feature reduction and parameter tuning. With various publically available HAR datasets, we could also achieve significant improvement in HAR classification. Our CNN model is also compared against Recurrent-Neural-Network(RNN) with Long Short-Term Memory(LSTM) to demonstrate its superiority. Noticeably, our model could distinguish both general activities and near-identical activities such as sitting down on the chair and floor, with almost perfect classification accuracy.

A Study for Progressive Working of Electronic Products by the using 3-D Shape Recognition Method (3차원 형상인식 기법을 이용한 전기제품의 프로그레시브 가공에 관한 연구)

  • Kim, Y. M.;Kim, J. H.;Song, S. W.;Kim, C.;Choi, J. C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.591-594
    • /
    • 2000
  • This paper describes a research work of developing a computer-aided design of product with bending and piercing for progressive working. An approach to the system for progressive working is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of four main modules, which are input and shape treatment, flat pattern layout, strip layout and die layout module. Based on knowledge-based rules, the system is designed by considering several factors such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, bending sequence, and availability of press. Strip layout drawing generated by the piercing processes with punch profiles divided into for external area is simulated in 3-D graphic forms, including bending sequences for the product with piercing and bending. Results obtained using the modules enable the manufacturer for progressive working of electronic products to be more efficient in this field.

  • PDF

A Study on ISAR Imaging Algorithm for Radar Target Recognition (표적 구분을 위한 ISAR 영상 기법에 대한 연구)

  • Park, Jong-Il;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.294-303
    • /
    • 2008
  • ISAR(Inverse Synthetic Aperture Radar) images represent the 2-D(two-dimensional) spatial distribution of RCS (Radar Cross Section) of an object, and they can be applied to the problem of target identification. A traditional approach to ISAR imaging is to use a 2-D IFFT(Inverse Fast Fourier Transform). However, the 2-D IFFT results in low resolution ISAR images especially when the measured frequency bandwidth and angular region are limited. In order to improve the resolution capability of the Fourier transform, various high-resolution spectral estimation approaches have been applied to obtain ISAR images, such as AR(Auto Regressive), MUSIC(Multiple Signal Classification) or Modified MUSIC algorithms. In this study, these high-resolution spectral estimators as well as 2-D IFFT approach are combined with a recently developed ISAR image classification algorithm, and their performances are carefully analyzed and compared in the framework of radar target recognition.

Development of an Improved Geometric Path Tracking Algorithm with Real Time Image Processing Methods (실시간 이미지 처리 방법을 이용한 개선된 차선 인식 경로 추종 알고리즘 개발)

  • Seo, Eunbin;Lee, Seunggi;Yeo, Hoyeong;Shin, Gwanjun;Choi, Gyeungho;Lim, Yongseob
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.35-41
    • /
    • 2021
  • In this study, improved path tracking control algorithm based on pure pursuit algorithm is newly proposed by using improved lane detection algorithm through real time post-processing with interpolation methodology. Since the original pure pursuit works well only at speeds below 20 km/h, the look-ahead distance is implemented as a sigmoid function to work well at an average speed of 45 km/h to improve tracking performance. In addition, a smoothing filter was added to reduce the steering angle vibration of the original algorithm, and the stability of the steering angle was improved. The post-processing algorithm presented has implemented more robust lane recognition system using real-time pre/post processing method with deep learning and estimated interpolation. Real time processing is more cost-effective than the method using lots of computing resources and building abundant datasets for improving the performance of deep learning networks. Therefore, this paper also presents improved lane detection performance by using the final results with naive computer vision codes and pre/post processing. Firstly, the pre-processing was newly designed for real-time processing and robust recognition performance of augmentation. Secondly, the post-processing was designed to detect lanes by receiving the segmentation results based on the estimated interpolation in consideration of the properties of the continuous lanes. Consequently, experimental results by utilizing driving guidance line information from processing parts show that the improved lane detection algorithm is effective to minimize the lateral offset error in the diverse maneuvering roads.

Emotion Recognition System Using Neural Networks in Textile Images (신경망을 이용한 텍스타일 영상에서의 감성인식 시스템)

  • Kim, Na-Yeon;Shin, Yun-Hee;Kim, Soo-Jeong;Kim, Jee-In;Jeong, Karp-Joo;Koo, Hyun-Jin;Kim, Eun-Yi
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.9
    • /
    • pp.869-879
    • /
    • 2007
  • This paper proposes a neural network based approach for automatic human emotion recognition in textile images. To investigate the correlation between the emotion and the pattern, the survey is conducted on 20 peoples, which shows that a emotion is deeply affected by a pattern. Accordingly, a neural network based classifier is used for recognizing the pattern included in textiles. In our system, two schemes are used for describing the pattern; raw-pixel data extraction scheme using auto-regressive method (RDES) and wavelet transformed data extraction scheme (WTDES). To assess the validity of the proposed method, it was applied to recognize the human emotions in 100 textiles, and the results shows that using WTDES guarantees better performance than using RDES. The former produced the accuracy of 71%, while the latter produced the accuracy of 90%. Although there are some differences according to the data extraction scheme, the proposed method shows the accuracy of 80% on average. This result confirmed that our system has the potential to be applied for various application such as textile industry and e-business.

Development of Real-Time Face Region Recognition System for City-Security CCTV (도심방범용 CCTV를 위한 실시간 얼굴 영역 인식 시스템)

  • Kim, Young-Ho;Kim, Jin-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.504-511
    • /
    • 2010
  • In this paper, we propose the face region recognition system for City-Security CCTV(Closed Circuit Television) using hippocampal neural network which is modelling of human brain's hippocampus. This system is composed of feature extraction, learning and recognition part. The feature extraction part is constructed using PCA(Principal Component Analysis) and LDA(Linear Discriminants Analysis). In the learning part, it can label the features of the image-data which are inputted according to the order of hippocampal neuron structure to reaction-pattern according to the adjustment of a good impression in a dentate gyrus and remove the noise through the auto-associative memory in the CA3 region. In the CA1 region receiving the information of the CA3, it can make long-term memory learned by neuron. Experiments confirm the each recognition rate, that are shape change and light change. The experimental results show that we can compare a feature extraction and learning method proposed in this paper of any other methods, and we can confirm that the proposed method is superior to existing methods.

Study of Traffic Sign Auto-Recognition (교통 표지판 자동 인식에 관한 연구)

  • Kwon, Mann-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5446-5451
    • /
    • 2014
  • Because there are some mistakes by hand in processing electronic maps using a navigation terminal, this paper proposes an automatic offline recognition for traffic signs, which are considered ingredient navigation information. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which have been used widely in the field of 2D face recognition as computer vision and pattern recognition applications, was used to recognize traffic signs. First, using PCA, a high-dimensional 2D image data was projected to a low-dimensional feature vector. The LDA maximized the between scatter matrix and minimized the within scatter matrix using the low-dimensional feature vector obtained from PCA. The extracted traffic signs under a real-world road environment were recognized successfully with a 92.3% recognition rate using the 40 feature vectors created by the proposed algorithm.