• Title/Summary/Keyword: Auto detection

Search Result 360, Processing Time 0.023 seconds

A Study on High-precision Autofocus Matching Device for Smoke Detector Based on IR Laser (IR 레이저 기반 연기감지기를 위한 고정밀 자동초점 정합장치에 관한 연구)

  • Kim, Gwan-Hyung;Shin, Dong-Suk;Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2759-2764
    • /
    • 2014
  • Smoke detector is commonly used to reduce fire detection time. However, technical problems regarding its inaccuracy of laser beam-receiving point on the surface of the sensor associated with incoming interference are identified when the laser transmitter and receiver are installed at a distance of about 100m. In this paper, we propose the auto focus alignment algorithm with high precision to adjust tilting angle of lasers caused by environmental interference so that solve existing issues using multi-level worm gear set.

Differential Display Detection of Acid-inducible Genes from Porphyra yezoensis Thalli (해조류 방사무늬김 (Porphra yezoensis) 엽체로부터 산 유도 유전자의 분리)

  • JIN Long-Guo;KANG Se-Eun;CHOI Jae-Suk;PARK Sun-Mee;PARK Jung-Youn;JIN Duck-Hee;HONG Yong-Ki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.4
    • /
    • pp.269-274
    • /
    • 2004
  • Genetic responses of the edible seaweed Porphyra yezoensis tissue to acid shock have been compared using differential display technique. The tissue was challenged in seawater containing $0.05{\%}$ hydrogen chloride (pH 3.0) for 5 min, then rehabilitated in normal seawater for 10 min, 30 min, 60 min and 4 hrs. Total RNA extracted by the LiCl-guanidium method was reverse transcribed and amplified by PCR with arbitrary primers. The amplified fragment responded by the acid shock was selectively isolated from agarose gel and sequenced with DNA auto sequencer. Sequence (1056 bp) of the cDNA contained at least two genes for ASP7K (MW 7418) and ASP5K (MW 5512) proteins.

A Study on the Recognition of Human Pulse Using Wavelet Transform (웨이브렛 변환을 이용한 맥파의 인식에 관한 연구)

  • 길세기;김낙환;박승환;민홍기;흥승홍
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.269-272
    • /
    • 2000
  • It is need to develop and apply a human pulse diagnosis system providing a quantitative and automatic analysis in the the oriental medicine. In order to analyze quantitatively the characteristic of pulsation, each of points had to be recognized accurately notifying the existence and the position of feature point in the wave form. And getting the period of human pulse. Thus, in this paper, it is proposed the preprocessing method of human pulse and the detection method of period by Wavelet Transformation. The human pulse is seprated from each band through Wavelet Transformation and feature points can be recognized through over the fact, and then the parameter of proposed Mac-Jin parameter is measured. Commonly, Human pulse signal has often various noises which are baseline drift, high frequency noise and so on. So it is significant to remove that noises. Thus, in this paper, the one period of human pulse is deciede and the feature points are detected after doing the preprocessing by wavelet transformation. As a result, it could be confirmed that this method is effective as a real program for the auto-diagnosis of human pulse.

  • PDF

An Acoustic Echo Canceler for Hands-Free Telephony, Considering Double Talk and Environment Noise (동시통화 및 주변 잡음을 고려한 핸즈프리 환경의 반향제거기)

  • Kim, Hyun-tae;Lee, Chan-Hee;Park, Jang-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.471-473
    • /
    • 2009
  • In this paper, we propose a double talk and noise robust acoustic echo canceler for hands-free telephony applications. The proposed system includes a double-talk detection method that detects the double-talk durations, which uses covariance between microphone input signa and estimated microphone input signal. And proposed adaptive algorithm for estimating acoustic echo path, uses normalized auto-covariance matrix of input signal with multiplication of residual error power and projection order of AP(affine projeciton) algorithm. It is confirmed that the proposed algorithm shows better performance from acoustic interference cancellation (AIC) viewpoint in double talk and noisy environments.

  • PDF

The Construction of Quality Inspection System for Sunroof Sealer Application Process Using SVM Algorithm (SVM 알고리즘을 활용한 선루프 실러도포 공정 품질검사 시스템 구축)

  • Yang, Hee-Jong;Jang, Gil-Sang
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.3
    • /
    • pp.83-88
    • /
    • 2021
  • Recently, due to the aging of workers and the weakening of the labor base in the automobile industry, research on quality inspection methods through ICT(Information and Communication Technology) convergence is being actively conducted. A lot of research has already been done on the development of an automated system for quality inspection in the manufacturing process using image processing. However, there is a limit to detecting defects occurring in the automotive sunroof sealer application process, which is the subject of this study, only by image processing using a general camera. To solve this problem, this paper proposes a system construction method that collects image information using a infrared thermal imaging camera for the sunroof sealer application process and detects possible product defects based on the SVM(Support Vector Machine) algorithm. The proposed system construction method was actually tested and applied to auto parts makers equipped with the sunroof sealer application process, and as a result, the superiority, reliability, and field applicability of the proposed method were proven.

A Review of AI-based Automobile Accident Prevention Systems (인공지능 기반의 자동차사고 감지 시스템 적용 사례 분석)

  • Choi, Jae Gyeong;Kong, Chan Woo;Lim, Sunghoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.1
    • /
    • pp.9-14
    • /
    • 2020
  • Artificial intelligence (AI) has been applied to most industries by enhancing automation and contributing greatly to efficient processes and high-quality production. This research analyzes the applications of AI-based automobile accident prevention systems. It deals with AI-based collision prevention systems that learn information from various sensors attached to cars and AI-based accident detection systems that automatically report accidents to the control center in the event of a collision. Based on the literature review, technological and institutional changes are taking place at the national levels, which recognize the effectiveness of the systems. In addition, start-ups at home and abroad as well as major car manufacturers are in the process of commercializing auto parts equipped with AI-based collision prevention technology.

Network Traffic Classification Based on Deep Learning

  • Li, Junwei;Pan, Zhisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4246-4267
    • /
    • 2020
  • As the network goes deep into all aspects of people's lives, the number and the complexity of network traffic is increasing, and traffic classification becomes more and more important. How to classify them effectively is an important prerequisite for network management and planning, and ensuring network security. With the continuous development of deep learning, more and more traffic classification begins to use it as the main method, which achieves better results than traditional classification methods. In this paper, we provide a comprehensive review of network traffic classification based on deep learning. Firstly, we introduce the research background and progress of network traffic classification. Then, we summarize and compare traffic classification based on deep learning such as stack autoencoder, one-dimensional convolution neural network, two-dimensional convolution neural network, three-dimensional convolution neural network, long short-term memory network and Deep Belief Networks. In addition, we compare traffic classification based on deep learning with other methods such as based on port number, deep packets detection and machine learning. Finally, the future research directions of network traffic classification based on deep learning are prospected.

GNSS NLOS Signal Classifier with Successive Correlation Outputs using CNN

  • Sangjae, Cho;Jeong-Hoon, Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • The problem of classifying a non-line-of-sight (NLOS) signal in a multipath channel is important to improve global navigation satellite system (GNSS) positioning accuracy in urban areas. Conventional deep learning-based NLOS signal classifiers use GNSS satellite measurements such as the carrier-to-noise-density ratio (CN_0), pseudorange, and elevation angle as inputs. However, there is a computational inefficiency with use of these measurements and the NLOS signal features expressed by the measurements are limited. In this paper, we propose a Convolutional Neural Network (CNN)-based NLOS signal classifier that receives successive Auto-correlation function (ACF) outputs according to a time-series, which is the most primitive output of GNSS signal processing. We compared the proposed classifier to other DL-based NLOS signal classifiers such as a multi-layer perceptron (MLP) and Gated Recurrent Unit (GRU) to show the superiority of the proposed classifier. The results show the proposed classifier does not require the navigation data extraction stage to classify the NLOS signals, and it has been verified that it has the best detection performance among all compared classifiers, with an accuracy of up to 97%.

Malware Classification using Dynamic Analysis with Deep Learning

  • Asad Amin;Muhammad Nauman Durrani;Nadeem Kafi;Fahad Samad;Abdul Aziz
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.49-62
    • /
    • 2023
  • There has been a rapid increase in the creation and alteration of new malware samples which is a huge financial risk for many organizations. There is a huge demand for improvement in classification and detection mechanisms available today, as some of the old strategies like classification using mac learning algorithms were proved to be useful but cannot perform well in the scalable auto feature extraction scenario. To overcome this there must be a mechanism to automatically analyze malware based on the automatic feature extraction process. For this purpose, the dynamic analysis of real malware executable files has been done to extract useful features like API call sequence and opcode sequence. The use of different hashing techniques has been analyzed to further generate images and convert them into image representable form which will allow us to use more advanced classification approaches to classify huge amounts of images using deep learning approaches. The use of deep learning algorithms like convolutional neural networks enables the classification of malware by converting it into images. These images when fed into the CNN after being converted into the grayscale image will perform comparatively well in case of dynamic changes in malware code as image samples will be changed by few pixels when classified based on a greyscale image. In this work, we used VGG-16 architecture of CNN for experimentation.

Automated measurement and analysis of sidewall roughness using three-dimensional atomic force microscopy

  • Su‑Been Yoo;Seong‑Hun Yun;Ah‑Jin Jo;Sang‑Joon Cho;Haneol Cho;Jun‑Ho Lee;Byoung‑Woon Ahn
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.1.1-1.8
    • /
    • 2022
  • As semiconductor device architecture develops, from planar field-effect transistors (FET) to FinFET and gate-all-around (GAA), there is an increased need to measure 3D structure sidewalls precisely. Here, we present a 3-Dimensional Atomic Force Microscope (3D-AFM), a powerful 3D metrology tool to measure the sidewall roughness (SWR) of vertical and undercut structures. First, we measured three different dies repeatedly to calculate reproducibility in die level. Reproducible results were derived with a relative standard deviation under 2%. Second, we measured 13 different dies, including the center and edge of the wafer, to analyze SWR distribution in wafer level and reliable results were measured. All analysis was performed using a novel algorithm, including auto fattening, sidewall detection, and SWR calculation. In addition, SWR automatic analysis software was implemented to reduce analysis time and to provide standard analysis. The results suggest that our 3D-AFM, based on the tilted Z scanner, will enable an advanced methodology for automated 3D measurement and analysis.