• 제목/요약/키워드: Auto classification

검색결과 167건 처리시간 0.023초

기계 도면의 자동 입력을 위한 치수 집합의 인식 및 분류 (Recognition and classification of dimension set for automatic input of mechanical drawings)

  • 정윤수;박길흠
    • 전자공학회논문지S
    • /
    • 제34S권11호
    • /
    • pp.114-125
    • /
    • 1997
  • This paper presents a method that automatically recognizes dimension sets from the mechanical drawings, and that classifies 6 types dimension sets according to functional purpose. In the proposed method, the object and closed-loop symbols are separated from the character-free drawings. Then object lines and interpretation lines are vectorized. And, after recognizing dimension sets(consistings of arrowhead, shape line, tail lines, extension lines, text-string, and feature control frame), we classify recognized dimension sets as horizontal, vertical, angular, diametral, radial, and leader dimension sets. Finally the proposed method converts classified dimension sets into AutoCAD data by using AutoLisp language. By using the methods of geometric modeling, the proposed method readily recognized and classifies dimension sets from complex drawings. Experimetnal results are presented, which are obtained by applying the proposed method to drawings drawn in compliance with the KS drafting standard.

  • PDF

Stacked 오토엔코더 기반 승마보법의 분류 (Classification of Horse Gaits Based on Stacked Auto-Encoder)

  • 이재능;곽근창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.360-362
    • /
    • 2016
  • 본 논문에서는 실 승마 코칭을 수행하기 위해 Stacked 오토엔코더를 이용한 승마 보법을 분류하고자 한다. Staked Auto-encoder(SAE)에서 은닉층 수를 조절하여 승마데이터에 적합하게 쌓고, 성능을 비교하고 은닉층의 수를 수정한다. 데이터베이스 구축 환경은 16개의 관성센서로 이루어진 무선 네트워크로 구성된 슈트를 착용하고 국가대표급 승마 전문가로부터 데이터베이스를 취득한다. DB를 이용하여 보법별(평보, 속보, 경속보, 구보)로 각각 특징들(볼기 y축 포지션, 허리각도)을 이용하여 보법분류를 한다. 구축된 승마 모션데이터로 실험한 결과, 은닉층의 수가 1층일 때 성능은 95%를 보여주었고 은닉층의 수가 2층일 때 94%의 성능을 나타내었다.

고전원 전기장치 기반 전기자동차 교육 체계 구축과 자격 부여의 제고 방안 연구 (A Study on the Establishment of an Electric Vehicle Education System based on High-power Electric Devices and Improvement of Qualifications)

  • 손병래;박창신;류기현
    • 자동차안전학회지
    • /
    • 제15권4호
    • /
    • pp.32-38
    • /
    • 2023
  • With the transition from internal combustion engine vehicles to eco-friendly cars, it has become essential to systematically construct an education system for electric vehicles based on high-voltage electric devices. In this study, we discussed the establishment of an educational system for electric vehicles based on high-voltage electric devices and proposed methods for qualifications after completing the education. To ensure systematic education, we presented a classification of learners according to their levels and job competencies. Additionally, we emphasized the importance of providing adequate practical training equipment for courses that require higher qualifications. Finally, to distinguish between the levels of completion of training and practical skills, we highlighted the necessity of implementing a system to certificates to individuals who have successfully completed the systematic training program.

Classification Algorithms for Human and Dog Movement Based on Micro-Doppler Signals

  • Lee, Jeehyun;Kwon, Jihoon;Bae, Jin-Ho;Lee, Chong Hyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권1호
    • /
    • pp.10-17
    • /
    • 2017
  • We propose classification algorithms for human and dog movement. The proposed algorithms use micro-Doppler signals obtained from humans and dogs moving in four different directions. A two-stage classifier based on a support vector machine (SVM) is proposed, which uses a radial-based function (RBF) kernel and $16^{th}$-order linear predictive code (LPC) coefficients as feature vectors. With the proposed algorithms, we obtain the best classification results when a first-level SVM classifies the type of movement, and then, a second-level SVM classifies the moving object. We obtain the correct classification probability 95.54% of the time, on average. Next, to deal with the difficult classification problem of human and dog running, we propose a two-layer convolutional neural network (CNN). The proposed CNN is composed of six ($6{\times}6$) convolution filters at the first and second layers, with ($5{\times}5$) max pooling for the first layer and ($2{\times}2$) max pooling for the second layer. The proposed CNN-based classifier adopts an auto regressive spectrogram as the feature image obtained from the $16^{th}$-order LPC vectors for a specific time duration. The proposed CNN exhibits 100% classification accuracy and outperforms the SVM-based classifier. These results show that the proposed classifiers can be used for human and dog classification systems and also for classification problems using data obtained from an ultra-wideband (UWB) sensor.

다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론 (Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections)

  • 김무성;김남규
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.175-197
    • /
    • 2021
  • 최근 딥 러닝 기술의 발전으로 뉴스, 블로그 등 다양한 문서에 포함된 텍스트 분석에 딥 러닝 기술을 활용하는 연구가 활발하게 수행되고 있다. 다양한 텍스트 분석 응용 가운데, 텍스트 분류는 학계와 업계에서 가장 많이 활용되는 대표적인 기술이다. 텍스트 분류의 활용 예로는 정답 레이블이 하나만 존재하는 이진 클래스 분류와 다중 클래스 분류, 그리고 정답 레이블이 여러 개 존재하는 다중 레이블 분류 등이 있다. 특히, 다중 레이블 분류는 여러 개의 정답 레이블이 존재한다는 특성 때문에 일반적인 분류와는 상이한 학습 방법이 요구된다. 또한, 다중 레이블 분류 문제는 레이블과 클래스의 개수가 증가할수록 예측의 난이도가 상승한다는 측면에서 데이터 과학 분야의 난제로 여겨지고 있다. 따라서 이를 해결하기 위해 다수의 레이블을 압축한 후 압축된 레이블을 예측하고, 예측된 압축 레이블을 원래 레이블로 복원하는 레이블 임베딩이 많이 활용되고 있다. 대표적으로 딥 러닝 모델인 오토인코더 기반 레이블 임베딩이 이러한 목적으로 사용되고 있지만, 이러한 기법은 클래스의 수가 무수히 많은 고차원 레이블 공간을 저차원 잠재 레이블 공간으로 압축할 때 많은 정보 손실을 야기한다는 한계가 있다. 이에 본 연구에서는 오토인코더의 인코더와 디코더 각각에 스킵 연결을 추가하여, 고차원 레이블 공간의 압축 과정에서 정보 손실을 최소화할 수 있는 레이블 임베딩 방법을 제안한다. 또한 학술연구정보서비스인 'RISS'에서 수집한 학술논문 4,675건에 대해 각 논문의 초록으로부터 해당 논문의 다중 키워드를 예측하는 실험을 수행한 결과, 제안 방법론이 기존의 일반 오토인코더 기반 레이블 임베딩 기법에 비해 정확도, 정밀도, 재현율, 그리고 F1 점수 등 모든 측면에서 우수한 성능을 나타냄을 확인하였다.

Subset 샘플링 검증 기법을 활용한 MSCRED 모델 기반 발전소 진동 데이터의 이상 진단 (Anomaly Detection In Real Power Plant Vibration Data by MSCRED Base Model Improved By Subset Sampling Validation)

  • 홍수웅;권장우
    • 융합정보논문지
    • /
    • 제12권1호
    • /
    • pp.31-38
    • /
    • 2022
  • 본 논문은 전문가 독립적 비지도 신경망 학습 기반 다변량 시계열 데이터 분석 모델인 MSCRED(Multi-Scale Convolutional Recurrent Encoder-Decoder)의 실제 현장에서의 적용과 Auto-encoder 기반인 MSCRED 모델의 한계인, 학습 데이터가 오염되지 않아야 된다는 점을 극복하기 위한 학습 데이터 샘플링 기법인 Subset Sampling Validation을 제시한다. 라벨 분류가 되어있는 발전소 장비의 진동 데이터를 이용하여 1) 학습 데이터에 비정상 데이터가 섞여 있는 상황을 재현하고, 이를 학습한 경우 2) 1과 같은 상황에서 Subset Sampling Validation 기법을 통해 학습 데이터에서 비정상 데이터를 제거한 경우의 Anomaly Score를 비교하여 MSCRED와 Subset Sampling Validation 기법을 유효성을 평가한다. 이를 통해 본 논문은 전문가 독립적이며 오류 데이터에 강한 이상 진단 프레임워크를 제시해, 다양한 다변량 시계열 데이터 분야에서의 간결하고 정확한 해결 방법을 제시한다.

Cognitive Impairment Prediction Model Using AutoML and Lifelog

  • Hyunchul Choi;Chiho Yoon;Sae Bom Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권11호
    • /
    • pp.53-63
    • /
    • 2023
  • 본 연구는 고령층의 치매 예방을 위한 선별검사 수단으로 자동화된 기계학습(AutoML)을 활용하여 인지기능 장애 예측모형을 개발하였다. 연구 데이터는 한국지능정보사회진흥원의 '치매 고위험군 웨어러블 라이프로그 데이터'를 활용하였다. 분석은 구글 코랩 환경에서 PyCaret 3.0.0이 사용하여 우수한 분류성능을 보여주는 5개의 모형을 선정하고 앙상블 학습을 진행하여 모형을 통합한 뒤, 최종 성능평가를 진행하였다. 연구결과, Voting Classifier, Gradient Boosting Classifier, Extreme Gradient Boosting, Light Gradient Boosting Machine, Extra Trees Classifier, Random Forest Classifier 모형 순으로 높은 예측성능을 보이는 것으로 나타났다. 특히 '수면 중 분당 평균 호흡수'와 '수면 중 분당 평균 심박수'가 가장 중요한 특성변수(feature)로 확인되었다. 본 연구의 결과는 고령층의 인지기능 장애를 보다 효과적으로 관리하고 예방하기 위한 수단으로 기계학습과 라이프로그의 활용 가능성에 대한 고려를 시사한다.

접근이 어려운 IOT 환경에서의 IDS를 위한 효과적인 특징 추출과 분류 (Effective Feature Extraction and Classification for IDS in Accessible IOT Environment)

  • 이주화;박기현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.714-717
    • /
    • 2019
  • IOT는 복잡하고 이질적인 네트워크 환경이며 저전력 장치를 위한 새로운 라우팅 프로토콜의 존재로 인해 혁신적인 침입탐지 시스템이 필요하다. 특히 접근이 어려운 IOT 환경에서는 공격을 받았을 때 정확하고 빠른 탐지가 용이하여야 한다. 따라서 본 논문에서는 탐지의 정확성과 희소의 공격을 잘 탐지하기 위한 효과적인 특징 추출과 분류를 위한 SAR(Stacked Auto Encoder+Random Forest) 시스템을 제안한다.

Power Disturbance Classifier Using Wavelet-Based Neural Network

  • Choi Jae-Ho;Kim Hong-Kyun;Lee Jin-Mok;Chung Gyo-Bum
    • Journal of Power Electronics
    • /
    • 제6권4호
    • /
    • pp.307-314
    • /
    • 2006
  • This paper presents a wavelet and neural network based technology for the monitoring and classification of various types of power quality (PQ) disturbances. Simultaneous and automatic detection and classification of PQ transients, is recommended, however these processes have not been thoroughly investigated so far. In this paper, the hardware and software of a power quality data acquisition system (PQDAS) is described. In this system, an auto-classifying system combines the properties of the wavelet transform with the advantages of a neural network. Additionally, to improve recognition rate, extraction technology is considered.

신경망을 이용한 선박의 곡가공 외판 분류 자동화 (Auto Classification of Ship Surface Plates By Neural-Networks)

  • 김수영;신성철;김태건
    • 한국지능시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.103-108
    • /
    • 2002
  • 선박의 가공비를 선정하는데 있어서 선수, 선미의 복잡한 외판 가공은 큰 몫을 차지한다. 이러한 부분의 외판을 효과적으로 분류할 수 있다면 가공비 산정과 가공비를 줄이기 위한 방법을 모색하는데도 도움을 줄 것이다. 본 연구에서는 곡가공 외판을 효과적으로 분류하기 위해 신경망의 패턴분류 특성을 적용시켜 이를 해결해 보고자 한다.