In this paper we present an overview of damage diagnosis algorithms that have been developed over the past two decades using vibration signals obtained from structures. Then, the paper focuses primarily on algorithms that can be used following an extreme event such as a large earthquake to identify structural damage for responding in a timely manner. The algorithms presented in the paper use measurements obtained from accelerometers and gyroscope to identify the occurrence of damage and classify the damage. Example algorithms are presented include those based on autoregressive moving average (ARMA), wavelet energies from wavelet transform and rotation models. The algorithms are illustrated through application of data from test structures such as the ASCE Benchmark structure and laboratory tests of scaled bridge columns and steel frames. The paper concludes by identifying needs for research and development in order for such algorithms to become viable in practice.
Optimizing the performance of deep neural networks on embedded systems is a challenging task that requires efficient compilers and runtime systems. We propose a TVM-based approach that consists of three steps: quantization, auto-scheduling, and ahead-of-time compilation. Our approach reduces the computational complexity of models without significant loss of accuracy, and generates optimized code for various hardware platforms. We evaluate our approach on three representative CNNs using ImageNet Dataset on the NVIDIA Jetson AGX Xavier board and show that it outperforms baseline methods in terms of processing speed.
현대 의료 진단 분야 중 하나인 수면다원 검사에서 수면 단계 분류는 평가에 많은 시간이 소요되고 평가자 간 일관성 문제가 대두되고 있다. 이러한 평가 문제를 해결하기 위하여 최근 급격하게 발전하고 있는 딥러닝 기술을 이용하여 자동화하려는 연구가 활발히 진행되고 있다. 본 논문에서는 오토 인코더 (autoencoder)와 대조 학습 (contrastive learning)을 통해 수면 시 측정된 생체 신호에서 보다 중요한 특징을 추출하는 방법을 제안하고 제안된 방법의 딥러닝 모델을 구성 및 평가한다.
졸음운전은 전체 교통사고 원인 중 큰 비중을 차지하며 그 위험성이 음주운전보다도 크다고 알려져 있다. 따라서 운전자의 졸음을 판단하고 경고하는 시스템 개발에 대한 관심이 높아지고 있으며, 뇌파를 분석하는 것이 운전자의 피로와 졸음을 감지하는데 효과적이라는 연구결과들이 발표되었다. 본 논문은 짧은 시간에 높은 해상도를 가지는 auto-regressive 모델 기법 중 잡음에 강인한 errors-in-variables(EIV) 방법을 이용하여 특징벡터를 추출하고, 다층신경망(multilayer perceptron; MLP)에 적용하여 운전자의 상태를 각성, 천이, 졸음의 세 가지 상태로 분류하는 졸음 감지 시스템을 제안한다. 생체신호의 측정 환경에 따른 성능을 평가하기 위해 높은 진단률을 갖도록 하는 EIV차수를 결정하고, 잡음에 대한 강인성을 확인하기 위해 신호대 잡음비(signal-to-noise ratio; SNR)에 따른 성능을 선형 예측 부호화(linear predictive coding; LPC) 방법과 비교하였다. 이 결과로부터 제안한 EIV와 MLP를 결합한 졸음 감지 시스템은 기존의 LPC와 MLP를 이용한 시스템에 대해 우수한 성능을 얻을 수 있음을 확인하였다.
The fatality of rollover accidents in motor vehicle crashes is high despite their low incidence. Through the investigation of a 12-passenger van rollover accident in which 10 passengers were involved, we intend to analyze the correlation between the severity of the injury and the position of the occupants. We collected accident information from medical records, interviews, photo-images of the damaged van, field surveys, and the results of the Korean New Car Assessment Program (KNCAP). Based on the occupants' position, we classified injury sites and estimated injury severity. Passenger injury severity was evaluated by trauma score calculation. The initiation type of the rollover accident was passenger side 'fall-over' and the Collision Deformation Classification (CDC) code for the damaged van was 00TDZO3. The crash of the van involved 10 passengers, with an average age of $16.3{\pm}4.2years$. Few of the occupants had fastened seat belts at the time of the incident, and there was no airbag installed. One patient sustained severe liver injury and another was diagnosed with a fracture of the right humerus. The most common injuries were at the upper extremities and the neck. The average of Injury Severity Score (ISS) was $4.8{\pm}5.9$, and the average ISS of right-seated, mid-seated and left-seated occupants was $7.5{\pm}9.3$, $1.5{\pm}0.7$, and $3.3{\pm}2.1$ respectively (p>0.05). In the rollover (to-passenger side) accident of occupant unfastened, the average ISS of right-seated occupants (near side) was higher, but there was no statistically significant difference.
잡지기사 관련 상품 연계 추천 서비스는 온라인 상에서 잡지 가사의 컨텍스트를 반영하여 상품을 추천하는 서비스이다. 현재 이러한 서비스는 잡지기사와 상품에 부여되어 있는 태그 간의 유사성을 기준으로 한 추천 기술에 의존하고 있으나, 태그 부여 비용과 추천의 정확도가 높지 않은 단점이 있다. 본 논문에서는 잡지 기사 컨텍스트 관련 상품연계 추천 기술의 한 요소로서 상품이미지 정보로부터 상품의 종류를 자동으로 분류하고 이를 상품의 태그로 활용하는 방법을 제안한다. 이미지에서 추출한 시각단어(visual word)와 상품 종류 간의 고차 연관관계를 하이퍼네트워크 기법을 통해 학습하고, 학습된 하이퍼네트워크를 이용하여 상품 이미지에 한 개 이상의 태그를 자동으로 부여한다. 실제 온라인 쇼핑몰에서 사용되는 10 가지 종류의 상품 1,251개의 이미지 데이터를 기반으로, 하이퍼네트워크 이용한 상품이미지 자동 태깅 기법이 다른 기계학습 방법과 비교하여 경쟁력 있는 성능을 보여줌과 동시에, 복수개의 태그 부여를 통해 상품 이미지 태깅의 정확성이 향상됨을 보인다.
지형지물은 각각의 특징적 요인을 내포하고 있다. 이 특징적 요인들은, 공간해상도에 따라 정도의 차이가 있겠지만, 수집된 위성영상에도 반영된다. 이러한 요인들 중에서는 영상분류에 활용될 경우 영상 분류의 정확도를 높혀주고, 때로는 이것이 거의 물체인식의 수준까지 기여할 수 있는 것들이 있다. 이 연구에서는 텍스춰 및 지형지물의 배열에 있어서 특징적 현상을 보이는 비닐하우스를 대상으로 spatial auto-corelation 개념을 기반으로 자동적으로 이를 인지하는 방법을 개발하였다. 사용된 알고리즘은 디지타이징과 같은 사람의 직접적인 개입이 없이 자동화된 방법으로 비닐하우스의 특정한 패턴이 반복적으로 나타나는 것을 감지할 수 있도록 개발되었다. 패틴의 인식에 더하여 비닐하우스의 기하학적 모양을 고려하는 방법도 도입하였다. 그럼으로써 비닐하우스의 추출에 단순히 화소 단위의 분석이 아닌 보다 객체지향적인 방법으로 비닐하우스를 추출하도록 하였다. 개발된 방법을 제주지역의 IKONOS에 적용시켜 본 결과 연구대상지역내의 비닐하우스가 매우 정확하게 적출되었다.
본 연구에서는 코딩없이 인공지능 학습 모델을 개발할 수 있는 클라우드 기반의 버텍스 AI 플렛폼을 이용하여 비전문가인 일반인들이 손쉽게 인공지능 학습 모델을 개발하였고 임상적 적용가능성을 확인하였다. 학습용 데이터는 캐글 사이트에 공개된 총9개 치과 질환, 2,999장 치근병 X선 영상을 사용하였고, 무작위로 학습, 검증 및 테스트 데이터 이미지를 분류하였다. 버텍스 AI의 기본 학습모델 워크플로우에서 학습 파이프라인을 사용하여 하이퍼 파라미터 조정작업을 통해 영상분류, 멀티레이블 학습을 수행하였다. Auto ML을 수행한 결과 AUC가 0.967, 정밀도는 95.6%, 재현율은 95.2%로 나타났으며, 학습된 인공지능 모델이 임상적 진단에 충분한 의미가 있음을 확인하였다.
기존의 자동 띄어쓰기 연구는 n-gram 기반의 통계적인 기법을 이용하거나 형태소 분석기를 이용하여 어절 경계면에 공백을 삽입하는 방법으로 띄어쓰기 오류를 수정한다. 본 논문에서는 심층 신경망을 이용한 종단 간(end-to-end) 한국어 문장 자동 띄어쓰기 시스템을 제안한다. 자동 띄어쓰기 문제를 어절 단위가 아닌 음절 단위 태그 분류 문제로 정의하고 음절 unigram 임베딩과 양방향 LSTM Encoder로 문장 음절간의 양방향 의존 관계 정보를 고정된 길이의 문맥 자질 벡터로 연속적인 벡터 공간에 표현한다. 그리고 새로이 표현한 문맥 자질 벡터를 자동 띄어쓰기 태그(B 또는 I)로 분류한 후 B 태그 앞에 공백을 삽입하는 방법으로 한국어 문장의 자동 띄어쓰기를 수행하였다. 자동 띄어쓰기 태그 분류를 위해 전방향 신경망, 신경망 언어 모델, 그리고 선형 체인 CRF의 세 가지 방법의 분류 망에 따라 세 가지 심층 신경망 모델을 구성하고 종단 간 한국어 자동 띄어쓰기 시스템의 성능을 비교하였다. 세 가지 심층 신경망 모델에서 분류 망으로 선형체인 CRF를 이용한 심층 신경망 모델이 더 우수함을 보였다. 학습 및 테스트 말뭉치로는 최근에 구축된 대용량 한국어 원시 말뭉치로 KCC150을 사용하였다.
본 연구는 홍삼 등급 판정을 위한 내부 상태 및 조직의 치밀도 분석 방법에 관한 것이다. 홍삼 내부 측정을 위해 1990년대 이후부터는 자기공명영상법(MRI), X-ray 판별 등의 비파괴 검사 방법에 대한 연구가 다양하게 이루어졌지만, 등급 판정에 가장 중요한 내공(內空), 내백(內白)을 파악하는데 어려움이 있어 정확한 내부 판정이 불가능하였다. 그리하여 본 연구에서는 적외선 조명 환경의 폐쇄형 영상 취득 장치를 제작하고 내공, 내백의 유무와 직경을 파악할 수 있는 내부 측정 시스템을 개발하였다. 제작한 장치는 홍삼 내부 투과율이 높은 950nm 파장대역의 적외선 조명, 적외선 대역 촬영이 가능한 카메라, 카메라에 홍삼의 초점을 자동제어 할 수 있는 Y축 제어 액추에이터 그리고 홍삼을 $1^{\circ}$의 간격으로 $360^{\circ}$ 회전하며 영상을 취득할 수 있는 회전 액추에이터로 구성이 되어있다. 제안하는 알고리즘은 Y축 액추에이터에서 Auto-Focus 알고리즘을 수행하여 홍삼의 크기와 두께 변화에 따라 객체의 선명한 초점을 자동으로 맞춰준다. 그다음 홍삼을 $1^{\circ}$ 간격으로 $360^{\circ}$ 회전하며 총 360장의 홍삼 영상을 취득하면 라돈 변환(Radon transform)을 통해 사이노그램(Sinogram)으로 재구성하고, 역 라돈 변환(Inverse Radon transform)을 통해 단층영상복원(Back-projection) 알고리즘이 수행되어 홍삼 내부 영상을 획득하였다. 알고리즘 수행 결과 홍삼 두께나 모양에 관계없이 내부 단면영상 획득이 가능하였고 영상을 통해 내공, 내백의 유무와 직경을 파악할 수 있었다. 추후 10,000개 이상의 다양한 모양과 크기를 가지는 홍삼에 대하여 내부 영상을 취득하여 등급 판별 기준을 적용한다면 신뢰성 있는 홍삼 등급 자동화 측정 방법으로 사용가능 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.