• 제목/요약/키워드: Auto classification

검색결과 167건 처리시간 0.022초

On the development of data-based damage diagnosis algorithms for structural health monitoring

  • Kiremidjian, Anne S.
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.263-271
    • /
    • 2022
  • In this paper we present an overview of damage diagnosis algorithms that have been developed over the past two decades using vibration signals obtained from structures. Then, the paper focuses primarily on algorithms that can be used following an extreme event such as a large earthquake to identify structural damage for responding in a timely manner. The algorithms presented in the paper use measurements obtained from accelerometers and gyroscope to identify the occurrence of damage and classify the damage. Example algorithms are presented include those based on autoregressive moving average (ARMA), wavelet energies from wavelet transform and rotation models. The algorithms are illustrated through application of data from test structures such as the ASCE Benchmark structure and laboratory tests of scaled bridge columns and steel frames. The paper concludes by identifying needs for research and development in order for such algorithms to become viable in practice.

임베디드 시스템에서의 객체 분류를 위한 TVM기반의 성능 최적화 연구 (TVM-based Performance Optimization for Image Classification in Embedded Systems)

  • 허청환;예민해;신익희;이대우
    • 대한임베디드공학회논문지
    • /
    • 제18권3호
    • /
    • pp.101-108
    • /
    • 2023
  • Optimizing the performance of deep neural networks on embedded systems is a challenging task that requires efficient compilers and runtime systems. We propose a TVM-based approach that consists of three steps: quantization, auto-scheduling, and ahead-of-time compilation. Our approach reduces the computational complexity of models without significant loss of accuracy, and generates optimized code for various hardware platforms. We evaluate our approach on three representative CNNs using ImageNet Dataset on the NVIDIA Jetson AGX Xavier board and show that it outperforms baseline methods in terms of processing speed.

오토 인코더와 대조 학습을 활용한 수면 단계 분류 예측 모델의 성능 개선 (Sleep Stage Classification using AutoEncoder with Contrastive Learning and Its Performance Analysis)

  • 오승훈;김동영;이정근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.656-657
    • /
    • 2024
  • 현대 의료 진단 분야 중 하나인 수면다원 검사에서 수면 단계 분류는 평가에 많은 시간이 소요되고 평가자 간 일관성 문제가 대두되고 있다. 이러한 평가 문제를 해결하기 위하여 최근 급격하게 발전하고 있는 딥러닝 기술을 이용하여 자동화하려는 연구가 활발히 진행되고 있다. 본 논문에서는 오토 인코더 (autoencoder)와 대조 학습 (contrastive learning)을 통해 수면 시 측정된 생체 신호에서 보다 중요한 특징을 추출하는 방법을 제안하고 제안된 방법의 딥러닝 모델을 구성 및 평가한다.

EIV와 MLP를 이용한 뇌파 기반 운전자의 졸음 감지 시스템 (Electroencephalogram-Based Driver Drowsiness Detection System Using Errors-In-Variables(EIV) and Multilayer Perceptron(MLP))

  • 한형섭;송경영
    • 한국통신학회논문지
    • /
    • 제39C권10호
    • /
    • pp.887-895
    • /
    • 2014
  • 졸음운전은 전체 교통사고 원인 중 큰 비중을 차지하며 그 위험성이 음주운전보다도 크다고 알려져 있다. 따라서 운전자의 졸음을 판단하고 경고하는 시스템 개발에 대한 관심이 높아지고 있으며, 뇌파를 분석하는 것이 운전자의 피로와 졸음을 감지하는데 효과적이라는 연구결과들이 발표되었다. 본 논문은 짧은 시간에 높은 해상도를 가지는 auto-regressive 모델 기법 중 잡음에 강인한 errors-in-variables(EIV) 방법을 이용하여 특징벡터를 추출하고, 다층신경망(multilayer perceptron; MLP)에 적용하여 운전자의 상태를 각성, 천이, 졸음의 세 가지 상태로 분류하는 졸음 감지 시스템을 제안한다. 생체신호의 측정 환경에 따른 성능을 평가하기 위해 높은 진단률을 갖도록 하는 EIV차수를 결정하고, 잡음에 대한 강인성을 확인하기 위해 신호대 잡음비(signal-to-noise ratio; SNR)에 따른 성능을 선형 예측 부호화(linear predictive coding; LPC) 방법과 비교하였다. 이 결과로부터 제안한 EIV와 MLP를 결합한 졸음 감지 시스템은 기존의 LPC와 MLP를 이용한 시스템에 대해 우수한 성능을 얻을 수 있음을 확인하였다.

12인승 밴 전복사고의 상해 분석 (Injury Analysis of a 12-passenger Van Rollover Accident)

  • 김상철;최형연;김병우;박관진;안성민;이강현
    • 자동차안전학회지
    • /
    • 제10권1호
    • /
    • pp.20-26
    • /
    • 2018
  • The fatality of rollover accidents in motor vehicle crashes is high despite their low incidence. Through the investigation of a 12-passenger van rollover accident in which 10 passengers were involved, we intend to analyze the correlation between the severity of the injury and the position of the occupants. We collected accident information from medical records, interviews, photo-images of the damaged van, field surveys, and the results of the Korean New Car Assessment Program (KNCAP). Based on the occupants' position, we classified injury sites and estimated injury severity. Passenger injury severity was evaluated by trauma score calculation. The initiation type of the rollover accident was passenger side 'fall-over' and the Collision Deformation Classification (CDC) code for the damaged van was 00TDZO3. The crash of the van involved 10 passengers, with an average age of $16.3{\pm}4.2years$. Few of the occupants had fastened seat belts at the time of the incident, and there was no airbag installed. One patient sustained severe liver injury and another was diagnosed with a fracture of the right humerus. The most common injuries were at the upper extremities and the neck. The average of Injury Severity Score (ISS) was $4.8{\pm}5.9$, and the average ISS of right-seated, mid-seated and left-seated occupants was $7.5{\pm}9.3$, $1.5{\pm}0.7$, and $3.3{\pm}2.1$ respectively (p>0.05). In the rollover (to-passenger side) accident of occupant unfastened, the average ISS of right-seated occupants (near side) was higher, but there was no statistically significant difference.

잡지기사 관련 상품 연계 추천 서비스를 위한 하이퍼네트워크 기반의 상품이미지 자동 태깅 기법 (Auto-tagging Method for Unlabeled Item Images with Hypernetworks for Article-related Item Recommender Systems)

  • 하정우;김병희;이바도;장병탁
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권10호
    • /
    • pp.1010-1014
    • /
    • 2010
  • 잡지기사 관련 상품 연계 추천 서비스는 온라인 상에서 잡지 가사의 컨텍스트를 반영하여 상품을 추천하는 서비스이다. 현재 이러한 서비스는 잡지기사와 상품에 부여되어 있는 태그 간의 유사성을 기준으로 한 추천 기술에 의존하고 있으나, 태그 부여 비용과 추천의 정확도가 높지 않은 단점이 있다. 본 논문에서는 잡지 기사 컨텍스트 관련 상품연계 추천 기술의 한 요소로서 상품이미지 정보로부터 상품의 종류를 자동으로 분류하고 이를 상품의 태그로 활용하는 방법을 제안한다. 이미지에서 추출한 시각단어(visual word)와 상품 종류 간의 고차 연관관계를 하이퍼네트워크 기법을 통해 학습하고, 학습된 하이퍼네트워크를 이용하여 상품 이미지에 한 개 이상의 태그를 자동으로 부여한다. 실제 온라인 쇼핑몰에서 사용되는 10 가지 종류의 상품 1,251개의 이미지 데이터를 기반으로, 하이퍼네트워크 이용한 상품이미지 자동 태깅 기법이 다른 기계학습 방법과 비교하여 경쟁력 있는 성능을 보여줌과 동시에, 복수개의 태그 부여를 통해 상품 이미지 태깅의 정확성이 향상됨을 보인다.

공간패턴을 이용한 자동 비닐하우스 추출방법 (Automated Vinyl Green House Identification Method Using Spatial Pattern in High Spatial Resolution Imagery)

  • 이종열;김병선
    • 대한원격탐사학회지
    • /
    • 제24권2호
    • /
    • pp.117-124
    • /
    • 2008
  • 지형지물은 각각의 특징적 요인을 내포하고 있다. 이 특징적 요인들은, 공간해상도에 따라 정도의 차이가 있겠지만, 수집된 위성영상에도 반영된다. 이러한 요인들 중에서는 영상분류에 활용될 경우 영상 분류의 정확도를 높혀주고, 때로는 이것이 거의 물체인식의 수준까지 기여할 수 있는 것들이 있다. 이 연구에서는 텍스춰 및 지형지물의 배열에 있어서 특징적 현상을 보이는 비닐하우스를 대상으로 spatial auto-corelation 개념을 기반으로 자동적으로 이를 인지하는 방법을 개발하였다. 사용된 알고리즘은 디지타이징과 같은 사람의 직접적인 개입이 없이 자동화된 방법으로 비닐하우스의 특정한 패턴이 반복적으로 나타나는 것을 감지할 수 있도록 개발되었다. 패틴의 인식에 더하여 비닐하우스의 기하학적 모양을 고려하는 방법도 도입하였다. 그럼으로써 비닐하우스의 추출에 단순히 화소 단위의 분석이 아닌 보다 객체지향적인 방법으로 비닐하우스를 추출하도록 하였다. 개발된 방법을 제주지역의 IKONOS에 적용시켜 본 결과 연구대상지역내의 비닐하우스가 매우 정확하게 적출되었다.

구글 버텍스 AI을 이용한 치과 X선 영상진단 유용성 평가 (Preliminary Test of Google Vertex Artificial Intelligence in Root Dental X-ray Imaging Diagnosis)

  • 정현자
    • 한국방사선학회논문지
    • /
    • 제18권3호
    • /
    • pp.267-273
    • /
    • 2024
  • 본 연구에서는 코딩없이 인공지능 학습 모델을 개발할 수 있는 클라우드 기반의 버텍스 AI 플렛폼을 이용하여 비전문가인 일반인들이 손쉽게 인공지능 학습 모델을 개발하였고 임상적 적용가능성을 확인하였다. 학습용 데이터는 캐글 사이트에 공개된 총9개 치과 질환, 2,999장 치근병 X선 영상을 사용하였고, 무작위로 학습, 검증 및 테스트 데이터 이미지를 분류하였다. 버텍스 AI의 기본 학습모델 워크플로우에서 학습 파이프라인을 사용하여 하이퍼 파라미터 조정작업을 통해 영상분류, 멀티레이블 학습을 수행하였다. Auto ML을 수행한 결과 AUC가 0.967, 정밀도는 95.6%, 재현율은 95.2%로 나타났으며, 학습된 인공지능 모델이 임상적 진단에 충분한 의미가 있음을 확인하였다.

종단 간 심층 신경망을 이용한 한국어 문장 자동 띄어쓰기 (Automatic Word Spacing of the Korean Sentences by Using End-to-End Deep Neural Network)

  • 이현영;강승식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권11호
    • /
    • pp.441-448
    • /
    • 2019
  • 기존의 자동 띄어쓰기 연구는 n-gram 기반의 통계적인 기법을 이용하거나 형태소 분석기를 이용하여 어절 경계면에 공백을 삽입하는 방법으로 띄어쓰기 오류를 수정한다. 본 논문에서는 심층 신경망을 이용한 종단 간(end-to-end) 한국어 문장 자동 띄어쓰기 시스템을 제안한다. 자동 띄어쓰기 문제를 어절 단위가 아닌 음절 단위 태그 분류 문제로 정의하고 음절 unigram 임베딩과 양방향 LSTM Encoder로 문장 음절간의 양방향 의존 관계 정보를 고정된 길이의 문맥 자질 벡터로 연속적인 벡터 공간에 표현한다. 그리고 새로이 표현한 문맥 자질 벡터를 자동 띄어쓰기 태그(B 또는 I)로 분류한 후 B 태그 앞에 공백을 삽입하는 방법으로 한국어 문장의 자동 띄어쓰기를 수행하였다. 자동 띄어쓰기 태그 분류를 위해 전방향 신경망, 신경망 언어 모델, 그리고 선형 체인 CRF의 세 가지 방법의 분류 망에 따라 세 가지 심층 신경망 모델을 구성하고 종단 간 한국어 자동 띄어쓰기 시스템의 성능을 비교하였다. 세 가지 심층 신경망 모델에서 분류 망으로 선형체인 CRF를 이용한 심층 신경망 모델이 더 우수함을 보였다. 학습 및 테스트 말뭉치로는 최근에 구축된 대용량 한국어 원시 말뭉치로 KCC150을 사용하였다.

Back-Projection을 활용한 홍삼 내부 측정 시스템 (A Red Ginseng Internal Measurement System Using Back-Projection)

  • 박재영;이상준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권10호
    • /
    • pp.377-382
    • /
    • 2018
  • 본 연구는 홍삼 등급 판정을 위한 내부 상태 및 조직의 치밀도 분석 방법에 관한 것이다. 홍삼 내부 측정을 위해 1990년대 이후부터는 자기공명영상법(MRI), X-ray 판별 등의 비파괴 검사 방법에 대한 연구가 다양하게 이루어졌지만, 등급 판정에 가장 중요한 내공(內空), 내백(內白)을 파악하는데 어려움이 있어 정확한 내부 판정이 불가능하였다. 그리하여 본 연구에서는 적외선 조명 환경의 폐쇄형 영상 취득 장치를 제작하고 내공, 내백의 유무와 직경을 파악할 수 있는 내부 측정 시스템을 개발하였다. 제작한 장치는 홍삼 내부 투과율이 높은 950nm 파장대역의 적외선 조명, 적외선 대역 촬영이 가능한 카메라, 카메라에 홍삼의 초점을 자동제어 할 수 있는 Y축 제어 액추에이터 그리고 홍삼을 $1^{\circ}$의 간격으로 $360^{\circ}$ 회전하며 영상을 취득할 수 있는 회전 액추에이터로 구성이 되어있다. 제안하는 알고리즘은 Y축 액추에이터에서 Auto-Focus 알고리즘을 수행하여 홍삼의 크기와 두께 변화에 따라 객체의 선명한 초점을 자동으로 맞춰준다. 그다음 홍삼을 $1^{\circ}$ 간격으로 $360^{\circ}$ 회전하며 총 360장의 홍삼 영상을 취득하면 라돈 변환(Radon transform)을 통해 사이노그램(Sinogram)으로 재구성하고, 역 라돈 변환(Inverse Radon transform)을 통해 단층영상복원(Back-projection) 알고리즘이 수행되어 홍삼 내부 영상을 획득하였다. 알고리즘 수행 결과 홍삼 두께나 모양에 관계없이 내부 단면영상 획득이 가능하였고 영상을 통해 내공, 내백의 유무와 직경을 파악할 수 있었다. 추후 10,000개 이상의 다양한 모양과 크기를 가지는 홍삼에 대하여 내부 영상을 취득하여 등급 판별 기준을 적용한다면 신뢰성 있는 홍삼 등급 자동화 측정 방법으로 사용가능 할 것이다.