KSII Transactions on Internet and Information Systems (TIIS)
/
제8권8호
/
pp.2881-2894
/
2014
In complicated environment, context information plays an important role in image segmentation/labeling. The recently proposed auto-context algorithm is one of the effective context-based methods. However, the standard auto-context approach samples the context locations utilizing a fixed radius sequence, which is sensitive to large scale-change of objects. In this paper, we present a scale invariant auto-context (SIAC) algorithm which is an improved version of the auto-context algorithm. In order to achieve scale-invariance, we try to approximate the optimal scale for the image in an iterative way and adopt the corresponding optimal radius sequence for context location sampling, both in training and testing. In each iteration of the proposed SIAC algorithm, we use the current classification map to estimate the image scale, and the corresponding radius sequence is then used for choosing context locations. The algorithm iteratively updates the classification maps, as well as the image scales, until convergence. We demonstrate the SIAC algorithm on several image segmentation/labeling tasks. The results demonstrate improvement over the standard auto-context algorithm when large scale-change of objects exists.
Intelligent tutoring system enables users to effectively learn by utilizing various artificial intelligence techniques. For instance, it can recommend a proper curriculum or learning method to individual users based on their learning history. To do this effectively, user's characteristics need to be analyzed and classified based on various aspects such as interest, learning ability, and personality. Even though data labeled by the characteristics are required for more accurate classification, it is not easy to acquire enough amount of labeled data due to the labeling cost. On the other hand, unlabeled data should not need labeling process to make a large number of unlabeled data be collected and utilized. In this paper, we propose a semi-supervised learning method based on feedback variational auto-encoder(FVAE), which uses both labeled data and unlabeled data. FVAE is a variation of variational auto-encoder(VAE), where a multi-layer perceptron is added for giving feedback. Using unlabeled data, we train FVAE and fetch the encoder of FVAE. And then, we extract features from labeled data by using the encoder and train classifiers with the extracted features. In the experiments, we proved that FVAE-based semi-supervised learning was superior to VAE-based method in terms with accuracy and F1 score.
객체 분할 분야의 딥러닝 기반 컴퓨터 비전 응용들은 성능을 향상하기 위하여 STOA 기법들이 사전학습하여 배포한 하이퍼파라미터와 모델을 통해 학습하는 전이학습 방법을 사용한다. 이 과정에서 사용되는 커스텀 데이터 셋들은 Ground Truth 정보를 생성하기 위한 라벨링 작업에서 시간이나 라벨러등의 많은 자원을 필요로 한다. 본 고에서는 딥러닝 신경망에서 사용되는 커스텀 데이터 셋 구축을 위하여 시간이나 라벨러등의 자원을 적게 사용할 수 있도록 객체 분할 기법을 활용한 자동 라벨링 구축 방법을 제시한다.
Wi-Fi가 거의 모든 곳에서 사용이 가능한 환경이 도래하면서 Wi-Fi 기반의 센싱 시스템의 활용가능성에 대한 학계의 주목과 함께 활발한 연구가 진행되고 있다. 최근에는 채널 상태 정보(CSI)를 활용한 딥러닝 기술의 비약적 발달로 높은 감지 성능을 달성하고 있다. 하지만, 새로운 대상 도메인에 적용하기 위해서는 명시적인 데이터 수집 및 모델 재학습 과정의 값비싼 적응 노력 없이는 여전히 실질적으로는 사용하기가 어렵다. 본 연구에서는 딥러닝 기반의 Wi-Fi 센싱 시스템을 위한 훈련데이터 수집 및 레이블링을 자동으로 진행하는 CSI 자동 레이블링 시스템(CALS)를 제안한다. 제안 시스템은 CSI 데이터 수집 과정에서 컴퓨터 비전 기술을 함께 활용하여, 지도학습용으로 수집된 CSI 데이터에 대한 레이블링을 자동으로 수행토록 하였다. CALS의 효율성을 보이기 위해 라즈베리파이를 이용하여 프로토타입 시스템을 구현하고, 실내 환경에서의 사람 존재 감지를 수행하는 3가지 모델에 대해 학습과 평가를 진행하였다. 자동 수집된 데이터를 진행하여 학습을 활용하는 방식으로 실시간 데이터에 대해 평가를 진행했을 때 90% 이상의 높은 정확도를 달성하였다.
In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes. The key idea of the proposed technique is to learn representative features of the leak-free state using leak-free time-series acoustic data and the deep auto-encoder. The proposed technique can be used to create a PLD model that detects leaks in the pipeline in an unsupervised learning manner. This means that we only use leak-free data without labeling while training the deep auto-encoder. In addition, when compared to the previous supervised learning-based PLD method that uses image features, this technique does not require complex preprocessing of time-series acoustic data owing to the unsupervised feature extraction scheme. The experimental results show that the proposed PLD method using the deep auto-encoder can provide reliable PLD accuracy even considering unsupervised learning-based feature extraction.
구어 연구를 위한 전사 과정에서 문자로 표현된 발화를 녹음 음성에 연결해주는 작업을 레이블링이라고 한다. 기존 레이블링 도구들은 대부분 수동으로 작업이 이루어진다. 제안하는 반자동 레이블링은 자동화 모듈과 수동 조정 모듈로 구성된다. 자동화 모듈은 G.Saha 알고리즘을 활용하여 음성구간을 추출하고, 기구축된 발화텍스트의 발화 수와 발화의 길이 정보를 이용하여 발화구간을 예측한다. 본 논문에서는 기존 수동 도구의 정확성을 유지하기 위하여 자동 레이블링된 발화구간을 보정하기 위한 수동 조정 사용자 인터페이스를 제공한다. 제안하는 반자동 레이블링 알고리즘으로 구현한 도구는 기존 수동 레이블링 도구와 비교하여 작업 속도가 평균 27% 향상되었다.
BACKGROUND/OBJECTIVES: The prevalence of food allergies in Korean children aged 6 to 12 years increased from 10.9% in 1995 to 12.6% in 2012 according to nationwide population studies. Treatment for food allergies is avoidance of allergenic-related foods and epinephrine auto-injector (EPI) for accidental allergic reactions. This study compared knowledge and perception of food allergy labeling and dietary practices of students. SUBJECTS/METHODS: The study was conducted with the fourth to sixth grade students from an elementary school in Yongin. A total of 437 response rate (95%) questionnaires were collected and statistically analyzed. RESULTS: The prevalence of food allergy among respondents was 19.7%, and the most common food allergy-related symptoms were urticaria, followed by itching, vomiting and nausea. Food allergens, other than 12 statutory food allergens, included cheese, cucumber, kiwi, melon, clam, green tea, walnut, grape, apricot and pineapple. Children with and without food allergy experience had a similar level of knowledge on food allergies. Children with food allergy experience thought that food allergy-related labeling on school menus was not clear or informative. CONCLUSION: To understand food allergies and prevent allergic reactions to school foodservice among children, schools must provide more concrete and customized food allergy education.
The main purpose of this research is to develop a program supporting landscape planting design on AutoCAD basis using AutoLISP and DCL language. Current CAD use in landscape architecture field is mainly focused on customizing plant symbols for supporting two dimensional drafting rather than three dimensional consideration. This program is composed of eight module a such as PLANT module for inserting plant symbols, LABEL module for labeling task, SIMULATION module for simulating plant growth and seasonal color variation, TABLE module for generating plant table automatically, BUILDING module, BLOCK module, UTILITY module for deleting, transforming, shading symbols and DB MANAGER module for manipulating data. Design automation ability using automatic object recognition technique in this program allows AutoCAD to be used as a design tool in addition to its main role as a drafting tool through supporting landscape designers to generate many alternatives in the early phase of design.
Purpose: The aim of the present study is to evaluate the long term bone healing after horizontal ridge augmentation using auto block bone graft for implant installation timing. Materials and Methods: Five Beagle dogs(which were 14 months old and weighted approximately 10kg). In surgery 1(extraction & bone defect), premolars(P2, P3,P4) were extracted and the buccal bone plate was removed to create a horizontally defected ridge. After three months healing, in surgery 2(ridge augmentation). Auto block bone grafts from the mandibular ramus were used in filling the bone defects were fixed with stabilizing screws. The following fluorochrome labels were given intravenously to the beagle dogs: oxytetracycline 1week after the surgery, alizarin red 4 weeks after the surgery, calcein blue 8 weeks after the surgery. The tissue samples were obtained from the sacrificed dogs of 1, 4, 8, 12, 16 weeks after the surgery. Non-decalcified sections were prepared by resin embedding and microsection to find thickness of $10{\mu}m$ for the histologic examination and analysis. Results: 1. We could achieve the successful reconstruction of the horizontal bone defect by auto block bone graft. The grafted bone block remained stable morohologically after 16 weeks of the surgery. 2. In the histologic view. We observed osteoid tissue from the sample $4^{th}$ week sample and active capillary reconstruction in the grafted bone from the $12^{th}$ week sample. Healing procedures of auto bone grafts were compared to that of the host bone. 3. Bone mineralization could be detected from the $8^{th}$ week sample. 4. Fluorochrome labeling showed active bony changes and formation at the interface of the host bone and the block graft mainly. Bony activation in the grafted bone could be seen from the $4^{th}$ week samples. Conclusions: Active bone formation and remodeling between the grafted bone and host bone can be seen through the revascularization. After the perfect adhesion to host bone, Timing of successful implant installation can be detected through the ideal ridge formation by horizontal ridge augmentation.
In this study an automatic roiling-coli labeling system using robot vision system and peripheral mechanism is proposed and implemented, which instead of the manual labor to attach labels Rolling-coils in a steel miil. The binary image process for the image processing is performed with the threshold, and the contour line is converted to the binary gradient which detects the discontinuous variation of brightness of rolling-coils. The moment invariants algorithm proposed by Hu is used to make it easy to recognize even when the position of the center are different from the trained data. The position error compensation algorithm of six degrees of freedom industrial robot manipulator is also developed and the data of the position of the center rolling-coils, which is obtained by floor mount camera, are transfered by asynchronous communication method. Therefore even if the position of center is changed, robot moves to the position of center and performs the labeling work successfully. Therefore, this system can be improved the safety and efficiency.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.