• Title/Summary/Keyword: Auto Industry

Search Result 348, Processing Time 0.032 seconds

Flame image precise measurement and flame control to raise combustion efficiencies of a blast furnace (고로의 연소효율을 높이기 위한 화염영상 정밀 검출 및 화염제어)

  • Kim, Jae-Yeol;Lee, Seung-Chul;Kwak, Nam-Su;Han, Jae-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.8-14
    • /
    • 2014
  • Pulverized coal (PC) has become an important auxiliary fuel in the iron and steel industry since the technique of pulverized coal injection (PCI) was developed for iron making. The combustion efficiencies of pulverized coal in blowpipes and tuyeres under various operational conditions are numerically predicted to determine the performance levels with regard to different locations of the nozzles in a blast furnace. A variety of parameters, including the pulverized coal quantities, oxygen amounts, inlet temperatures of the tuyeres, and the mass flow rate of coal carrier gas are taken into consideration. Also, in order to develop greater efficiency than those of existing coal injection systems, this study applies a flame measurement system using a charge-coupled device (CCD) camera and a frame grabber. It uses auto sampling algorithms from the flame shape information to determine the device for the optimal location control for PCI. This study finds further improvements of the blast furnace performance via the control of the PCI locations.

Pulverized coal injection system development to raise combustion efficiencies of a blast furnace (고로의 연소효율을 높이기 위한 미분탄 공급 시스템 개발)

  • An, Young-Jin;Kang, Pub-Sung;Kwak, Na-Soo;Choi, Gyung-Min;Lee, Min-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3163-3168
    • /
    • 2008
  • Pulverized coal (PC) has become an important auxiliary fuel in the iron and steel industry since the technique of pulverized coal injection (PCI) system was developed for iron making. Combustion efficiencies of pulverized coal in blowpipes and tuyeres under various operational are numerically predicted to recognize the performance with the locations of nozzles in a blast furnace. A variety of parameters including the pulverized coal quantities, oxygen amounts, inlet temperature of the tuyeres and mass flow rate of coal carrier gas are taken into consideration. Also In order to develop more efficient than existing coal injection system, this study applies a flame measurement system using a charge couple device (CCD) camera and frame grabber. And it has used algorithms of auto sampling from flame shape information and composed the device for location control of PCI. This study find to further improve the blast furnace performance by the control of PCI locations.

  • PDF

Experimental Study on Thermoelectric Generator Performance for Waste Heat Recovery in Vehicles (자동차 배기폐열 회수용 열전발전 시스템의 성능에 관한 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.287-293
    • /
    • 2014
  • Internal combustion engines release 30~40% of the energy from fossil fuels into the atmosphere in the form of exhaust gases. By utilizing this waste heat, plenty of energy can be conserved in the auto industry. Thermoelectric generation is one way of transforming the energy from engine's exhaust gases into electricity in a vehicle. The thermoelectric generators located on the exhaust pipe have been developed for vehicle applications. Different experiments with thermoelectric generators have been conducted under various test conditions as following examples: hot gas temperature, hot gas mass flow rate, coolant temperature, and coolant mass flow rate. The experimental results have shown that the generated electrical power increases significantly with the temperature difference between the hot and the cold side of the thermoelectric generator and the gas flow rate of the hot-side heat exchanger. In addition, the gas temperature of the hot-side heat exchanger decreases with the length of the thermoelectric generator, especially at a low gas flow rate.

A Study on the Use of 3D Human Body Surface Shape Scan Data for Apparel Pattern Making (의류 패턴 설계를 위한 삼차원 인체 체표면 스캔 데이터 활용에 관한 연구)

  • 천종숙;서동애;이관석
    • The Research Journal of the Costume Culture
    • /
    • v.10 no.6
    • /
    • pp.709-717
    • /
    • 2002
  • In the apparel industry, the technology has been advanced rapidly. The use of 3D scanning systems fur the capture and measurement of human body is becoming common place. Three dimensional digital image can be used for design, inspection, reproduction of physical objects. The purpose of this study is to develop a method that drafts men's basic bodice pattern from scanned 3D body surface shape data. In order to pursue this purpose the researchers developed pattern drafting algorithm. The 3D scanner used in this study was Cyberware Whole Body Scanner WB-4. The bodice pattern drafting algorithm from 3D body surface shape data developed in this study is as follows. First, convert geometric 3D body surface data to 3D polygonal mesh data. Second, develop algorithm to lay out 3D polygonal patches onto a plane using Auto Lisp program. The polygon meshes are coplanar, and the individual mesh is continuously in contact with next one The bodice front surface shape data in polygonal patches form was lined up in bust and waist levels. The back bodice was drafted by lining up the polygonal mesh in scapula, chest, and waist levels. in the drafts, gaps between polygons were formed into the darts.

  • PDF

Use of semi-active tuned mass dampers for vibration control of force-excited structures

  • Setareh, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.341-356
    • /
    • 2001
  • A new class of semi-active tuned mass dampers, named as "Ground Hook Tuned Mass Damper" (GHTMD) is introduced. This TMD uses a continuously variable semi-active damper (so called 'Ground-Hook') in order to achieve more reduction in the vibration level. The ground-hook dampers have been used in the auto-industry as a means of reducing the vibration of primary suspension systems in vehicles. This paper investigates the application of this damper as an element of a tuned damper for the vibration reduction of force-excited single degree of freedom (SDOF) models that can be representative of many structural systems. The optimum design parameters of GHTMDs are obtained based on the minimization of the steady-state displacement response of the main mass. The optimum design parameters which are evaluated in terms of non-dimensional values of the GHTMD are obtained for different mass ratios and main mass damping ratios. Using the frequency responses of the resulting systems, performance of the GHTMD is compared to that of equivalent passive TMD, and it is found that GHTMDs are more efficient. A design methodology to obtain the tuning parameters of GHTMD using the relationships developed in this paper is presented.

Integrated Hospital Information System with IPv6 for Ubiquitous Healthcare Environment

  • Kwock, DongYeup;Moon, KangNam;Lee, JeongHoon;sahama, Tony;Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1030-1034
    • /
    • 2009
  • IPv6 and Ubiquitous Healthcare Environment (UHE) has become a main stream of the next generation technologies. IPv6 is designed in many ways with enhanced features such as a routing, mobility, scalability, QOS and security as a replacement of IPv4. Also, UHE is developed to provide patients with convenience and efficient healthcare services using the remote home healthcare system. However, IPv4 currently used as an Internet protocol does not have enough capability to fully support UHE. It may result in a restricted implementation of UHE. As a result, research on IPv6 implementations in UHE is increasingly becoming an issue within the healthcare industry. IPv6 has enhanced features to implement the remote healthcare system such as Neighbour Discovery process and address auto-configuration. In this paper, a basic of IPv6 and UHE will be firstly introduced and secondly, benefits brought by IPv6 in UHE will be discussed. In addition, security issues in IPv6 will be analysed to conclude this paper.

  • PDF

Analysis of Diagnosis Algorithm Implemented in TCU for High-Speed Tracked Vehicles (고속 무한궤도 차량용 변속제어기 진단 알고리즘 분석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.30-38
    • /
    • 2018
  • Electronic control units (ECUs) are currently popular, and have evolved further towards the high-end application of autonomous vehicles in the automotive industry. Such digital technologies have also become widespread, in agriculture and construction equipment. Likewise, transmission control of high-speed tracked vehicles is based on the transmission control unit (TCU), performing complex gear change control functions, and diagnostic algorithms (a TCU's self-diagnostic and reporting capability of malfunction data through CAN communication). Since all functions of TCU are implemented by embedded-software, it is hardly possible to analyze specifications by reverse engineering. In this paper a real-time transmission simulator adaptable to TCU is presented, for analysis of diagnosis algorithm and standards. Signal simulation circuits are deliberately designed considering electrical characteristics of TCU inputs and various analysis tools, such as analog input auto scan function, and global output enable switch, are implemented in software. Test results from hardware-in-the-loop simulator verify tolerance time for each error, as well as cause of fault, error reset conditions.

The Construction of Quality Inspection System for Sunroof Sealer Application Process Using SVM Algorithm (SVM 알고리즘을 활용한 선루프 실러도포 공정 품질검사 시스템 구축)

  • Yang, Hee-Jong;Jang, Gil-Sang
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.3
    • /
    • pp.83-88
    • /
    • 2021
  • Recently, due to the aging of workers and the weakening of the labor base in the automobile industry, research on quality inspection methods through ICT(Information and Communication Technology) convergence is being actively conducted. A lot of research has already been done on the development of an automated system for quality inspection in the manufacturing process using image processing. However, there is a limit to detecting defects occurring in the automotive sunroof sealer application process, which is the subject of this study, only by image processing using a general camera. To solve this problem, this paper proposes a system construction method that collects image information using a infrared thermal imaging camera for the sunroof sealer application process and detects possible product defects based on the SVM(Support Vector Machine) algorithm. The proposed system construction method was actually tested and applied to auto parts makers equipped with the sunroof sealer application process, and as a result, the superiority, reliability, and field applicability of the proposed method were proven.

Mobile Auto questions and scoring system (국가 사이버안보 시스템 관련 법률안 분석과 연구)

  • Nam, Won-Hee;Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.363-365
    • /
    • 2014
  • Internet baking, e-commerce, business processing, etc on smartphone handing could be possible in present days. Ambiguity between cyber and real life has made vulnerability on infrastructure, Gov't Service and National security by cyber terrorism. Especially, Lots of Infrastructure and Gov't Service based on Information Technology were exposed by Cyber terror. Legal system should be improved to keep from these threats. This paper proposed needs of cyber legal system by analyzing proposed cyber related code on Korean National Assembly, issue on Cyber Control Tower, National Cyber Security Industry and Human resource.

  • PDF

A study on structural stability of Backgrinding equipment using finite element analysis (유한요소해석을 이용한 백그라인딩 장비의 구조안정성 연구)

  • Wi, Eun-Chan;Ko, Min-Sung;Kim, Hyun-Jeong;Kim, Sung-Chul;Lee, Joo-Hyung;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.58-64
    • /
    • 2020
  • Lately, the development of the semiconductor industry has led to the miniaturization of electronic devices. Therefore, semiconductor wafers of very thin thickness that can be used in Multi-Chip Packages are required. There is active research on the backgrinding process to reduce the thickness of the wafer. The backgrinding process polishes the backside of the wafer, reducing the thickness of the wafer to tens of ㎛. The equipment that performs the backgrinding process requires ultra-precision. Currently, there is no full auto backgrinding equipment in Korea. Therefore, in this study, ultra-precision backgrinding equipment was designed. In addition, finite element analysis was conducted to verify the equipment design validity. The deflection and structural stability of the backgrinding equipment were analyzed using finite element analysis.