• Title/Summary/Keyword: Authentication means

Search Result 126, Processing Time 0.032 seconds

Improved Flyweight RFID Authentication Protocol

  • Vallent, Thokozani Felix;Yoon, Eun-Jun;Kim, Hyunsung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.95-105
    • /
    • 2012
  • The widespread implementation of RFID in ubiquitous computing is constrained considerably by privacy and security unreliability of the wireless communication channel. This failure to satisfy the basic, security needs of the technology has a direct impact of the limited computational capability of the tags, which are essential for the implementation of RFID. Because the universal application of RFID means the use of low cost tags, their security is limited to lightweight cryptographic primitives. Therefore, EPCGen2, which is a class of low cost tags, has the enabling properties to support their communication protocols. This means that satisfying the security needs of EPCGen2 could ensure low cost security because EPCGen2 is a class of low cost, passive tags. In that way, a solution to the hindrance of low cost tags lies in the security of EPCGen2. To this effect, many lightweight authentication protocols have been proposed to improve the privacy and security of communication protocols suitable for low cost tags. Although many EPCgen2 compliant protocols have been proposed to ensure the security of low cost tags, the optimum security has not been guaranteed because many protocols are prone to well-known attacks or fall short of acceptable computational load. This paper proposes a remedy protocol to the flyweight RFID authentication protocol proposed by Burmester and Munilla against a desynchronization attack. Based on shared pseudorandom number generator, this protocol provides mutual authentication, anonymity, session unlinkability and forward security in addition to security against a desynchronization attack. The desirable features of this protocol are efficiency and security.

  • PDF

Authentication Technologies of X-ray Inspection Image for Container Terminal Automation

  • Kim, Jong-Nam;Hwang, Jin-Ho;Ryu, Tae-Kyung;Moon, Kwang-Seok;Jung, Gwang-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1684-1688
    • /
    • 2005
  • In this paper, authentication technologies for X-ray inspection images in container merchandises are introduced and a method of authentication for X-ray inspection images is proposed. Until now, X-ray images of container merchandises have been managed without any authentication of inspection results and environments, it means that there was no any action for protection of illegal copy and counterfeiting of X-ray images from inspection results. Here, authentication identifies that who did inspect container X-ray images and, whether the container X-ray images were counterfeited or not. Our proposed algorithm indicates to put important information about X-ray inspection results on an X-ray image without affecting quality of the original image. Therefore, this paper will be useful in determining an appropriate technology and system specification for authentication of X-ray inspection images. As a result of experiment, we find that the information can be embedded to X-ray image without large degradation of image quality. Our proposed algorithm has high detection ratio by Quality 20 of JPEG attack.

  • PDF

Proposal for Optical One-time Password Authentication Using Digital Holography

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.722-732
    • /
    • 2016
  • A new optical one-time password (OTP) authentication method using digital holography is proposed, which enhances security strength in the authentication system. A challenge-response optical OTP algorithm based on two-factor authentication is presented using two-step phase-shifting digital holography, and two-way authentication is also performed using challenge-response handshake in both directions. Identification (ID), password (PW), and OTP are encrypted with a shared key by applying phase-shifting digital holography, and these encrypted pieces of information are verified by each party by means of the shared key. The encrypted digital holograms are obtained by Fourier-transform holography and are recorded on a CCD with 256 quantized gray-level intensities. Because the intensity pattern of such an encrypted digital hologram is distributed randomly, it guards against a replay attack and results in higher security level. The proposed method has advantages, in that it does not require a time-synchronized OTP, and can be applied to various authentication applications. Computer experiments show that the proposed method is feasible for high-security OTP authentication.

A Heterogeneous IoT Node Authentication Scheme Based on Hybrid Blockchain and Trust Value

  • Zhang, Shiqiang;Cao, Yang;Ning, Zhenhu;Xue, Fei;Cao, Dongzhi;Yang, Yongli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3615-3638
    • /
    • 2020
  • Node identity authentication is an essential means to ensure the security of the Internet of Things. Existing blockchain-based IoT node authentication schemes have many problems. A heterogeneous IoT node authentication scheme based on an improved hybrid blockchain is proposed. Firstly, the hybrid blockchain model is designed to make the blockchain and IoT environment more compatible. Then the proxy node selection mechanism is intended to establish a bridge between the ordinary IoT node and the blockchain, building by calculating the trust value between nodes. Finally, based on the improved hybrid blockchain, the node authentication scheme of the model and proxy node selection mechanism establishes a secure connection for communication between nodes. Safety and performance analysis shows proper safety and performance.

An Improved Lightweight Two-Factor Authentication and Key Agreement Protocol with Dynamic Identity Based on Elliptic Curve Cryptography

  • Qiu, Shuming;Xu, Guosheng;Ahmad, Haseeb;Xu, Guoai;Qiu, Xinping;Xu, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.978-1002
    • /
    • 2019
  • With the rapid development of the Internet of Things, the problem of privacy protection has been paid great attention. Recently, Nikooghadam et al. pointed out that Kumari et al.'s protocol can neither resist off-line guessing attack nor preserve user anonymity. Moreover, the authors also proposed an authentication supportive session initial protocol, claiming to resist various vulnerability attacks. Unfortunately, this paper proves that the authentication protocols of Kumari et al. and Nikooghadam et al. have neither the ability to preserve perfect forward secrecy nor the ability to resist key-compromise impersonation attack. In order to remedy such flaws in their protocols, we design a lightweight authentication protocol using elliptic curve cryptography. By way of informal security analysis, it is shown that the proposed protocol can both resist a variety of attacks and provide more security. Afterward, it is also proved that the protocol is resistant against active and passive attacks under Dolev-Yao model by means of Burrows-Abadi-Needham logic (BAN-Logic), and fulfills mutual authentication using Automated Validation of Internet Security Protocols and Applications (AVISPA) software. Subsequently, we compare the protocol with the related scheme in terms of computational complexity and security. The comparative analytics witness that the proposed protocol is more suitable for practical application scenarios.

A Study on Definitions of Security Requirements for Identification and Authentication on the Step of Analysis (분석단계 보안에서 식별 및 인증의 보안 요건 정의에 대한 연구)

  • Shin, Seong-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.87-93
    • /
    • 2014
  • TIn analysis as the first step of S/W development, security requirements of identification and authentication, ID and password management, authentication process, authentication method, ete. should be defined. Identification is to uniquely identify certain users and applications running on a certain system. Authentication means the function to determine true or false users and applications in some cases. This paper is to suggest the security requirements for identification and authentication in analysis step. Firstly, individual ID should be uniquely identified. The second element is to apply the length limitations, combination and periodic changes of passwords. The third should require the more reinforced authentication methods besides ID and passwords and satisfy the defined security elements on authentication process. In this paper, the security requirements for the step of identification and authentication have been explained through several practical implementation methods.

App-based 2-channel User Authentication Scheme for Multiple Application Systems (다중 응용시스템용 앱기반 2-채널 사용자 인증방안)

  • Song, Tae-Gi;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.9
    • /
    • pp.141-148
    • /
    • 2018
  • Currently, the user authentication technology used by users to access multiple applications within an organization is being applied with ID/PW-based SSO technology. These user authentication methods have the fundamental disadvantages of ID/PW and SSO. This means that security vulnerabilities in ID/PW can lead to periodic changes in PWs and limits on the number of incorrect PW inputs, and SSO adds high cost of the SSO server, which centrally stores the authentication information, etc. There is also a fundamental vulnerability that allows others to freely use other people's applications when they leave the portal application screen with SSO. In this paper, we proposed an app-based 2-channel authentication scheme to fundamentally eliminate problems with existing ID/PW-based SSO user authentication technologies. To this end, it distributed centralized user authentication information that is stored on SSO server to each individual's smartphone. In addition, when users access a particular application, they are required to be authenticated through their own smartphone apps.

A Study on Multi-Signature Scheme for Efficient User Authentication in Metaverse (메타버스 환경에서의 효율적인 사용자 인증을 위한 다중 서명 기법 연구)

  • Jae Young Jang;Soo Yong Jeong;Hyun Il Kim;Chang Ho Seo
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.27-35
    • /
    • 2023
  • Currently, online user authentication is perform using joint certificates issued by accredited certification authorities and simple certificates issued by private agency. In such a PKI(Public Key Infrastructure) system, various cryptographic technologies are used, and in particular, digital signatures are used as a core technology. The digital signature scheme is equally used in DID(Decentralized Identity), which is attracting attention to replace the existing centralized system. As such, the digital signature-based user authentication used in current online services is also applied in the metaverse, which is attracting attention as the next-generation online world. Metaverse, a compound word of "meta," which means virtual and transcendent, and "universe," means a virtual world that includes the existing online world. Due to various developments of the metaverse, it is expted that new authentication technologies including biometric authentication will be used, but existing authentication technologies are still being used. Therefore, in this study, we study digital signature scheme that can be efficiently used for user authentication in the developing metaverse. In particular, we experimentally analyze the effectiveness of ECDSA, which is currently used as a standard for digital signatures, and Schnorr signatures, which can quickly verify a large amount of signatures.

The Designs and Implementation of Trusted Channel between Secure Operating Systems

  • Yu, Joon-Suk;Lim, Jae-Deok;Kim, Jeong-Nyeo;Sohn, Sung-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05c
    • /
    • pp.2117-2120
    • /
    • 2003
  • Trusted channel provides a means of secure communication and it includes security services such as confidentiality, authentication, and so on. This paper describes the implementation of trusted channel between secure operating systems that integrates access control mechanisms with FreeBSD kernel code[1]. The trusted channel we developed offers confidentiality an4 message authentication for network traffic based on the destination address. It is implemented in the kernel level of IP layer and transparent to users.

  • PDF

A Study of New Authentication Method in Financial Accounts to Lock and Unlock Using the Smart-Devices (스마트기기를 이용한 금융계좌 잠금 및 해제 인증에 관한 연구)

  • Kim, Kwang Jin;Lee, Sung Joong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • This study can be solved a means of authentication of electronic financial transactions. We suggest that smart devices can be useful to authenticate in electronic financial transactions regardless of time and place. Our new authentication method named Lock-Unlock authentication method with smart devices. This method will be expected to reduce many kind of accidents (theft, phishing, hacking, certificates and simple certified OTP, ATM withdrawals, ARS, etc.) by account locking in electronic financial transactions. And helpful to users can effectively protect electronic financial transactions and minimize the accident during get a electronic trading.