• Title/Summary/Keyword: Authentication and Key Agreement

Search Result 154, Processing Time 0.021 seconds

Session Key Agreement Protocol for IoT Home Devices using Shadow Passwords (그림자 패스워드를 사용한 IoT 홈 디바이스 사이의 세션키 공유 프로토콜)

  • Jung, Seok Won
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.2
    • /
    • pp.93-100
    • /
    • 2020
  • Although various home services are developed as increasing the number of home devices with wire and wireless connection, privacy infringement and private information leakage are occurred by unauthorized remote connection. It is almost caused by without of device authentication and protection of transmission data. In this paper, the devices' secret value are stored in a safe memory of a smartphone. A smartphone processes device authentication. In order to prevent leakage of a device's password, a shadow password multiplied a password by the private key is stored in a device. It is proposed mutual authentication between a smartphone and a device, and session key agreement for devices using recovered passwords on SRP. The proposed protocol is resistant to eavesdropping, a reply attack, impersonation attack.

An Untraceable ECC-Based Remote User Authentication Scheme

  • Mehmood, Zahid;Chen, Gongliang;Li, Jianhua;Albeshri, Aiiad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1742-1760
    • /
    • 2017
  • Recent evolution in the open access internet technology demands that the identifying information of a user must be protected. Authentication is a prerequisite to ensure the protection of user identification. To improve Qu et al.'s scheme for remote user authentication, a recent proposal has been published by Huang et al., which presents a key agreement protocol in combination with ECC. It has been claimed that Huang et al. proposal is more robust and provides improved security. However, in the light of our experiment, it has been observed that Huang et al.'s proposal is breakable in case of user impersonation. Moreover, this paper presents an improved scheme to overcome the limitations of Huang et al.'s scheme. Security of the proposed scheme is evaluated using the well-known random oracle model. In comparison with Huang et al.'s protocol, the proposed scheme is lightweight with improved security.

ROSS: Low-Cost Self-Securing VoIP Communication Framework

  • Syafalni, Alfin;Samsudin, Azman;Jaafar, Yazid;Omar, Mohd. Adib
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3366-3383
    • /
    • 2012
  • Reliance on the Internet has introduced Voice over Internet Protocol (VoIP) to various security threats. A reliable security protocol and an authentication scheme are thus required to prevent the aforementioned threats. However, an authentication scheme often demands additional cost and effort. Accordingly, a security framework for known participants in VoIP communication is proposed in this paper. The framework is known as Randomness-Optimized Self-Securing (ROSS), which performs authentication automatically throughout the session by optimizing the uniqueness and randomness of the communication itself. Elliptic Curve Diffie-Hellman (ECDH) key exchange and Salsa20 stream cipher are utilized in the framework correspondingly to secure the key agreement and the communication with low computational cost. Human intelligence supports ROSS authentication process to ensure participant authenticity and communication regularity. The results show that with marginal overhead, the proposed framework is able to secure VoIP communication by performing reliable authentication.

An Enhanced Symmetric Key-Based Remote User Authentication Scheme with Forward Secrecy (전방향 안전성을 제공하는 개선된 대칭키 기반 원격 사용자 인증 방식)

  • Moon, Jongho;Won, Dongho
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.3
    • /
    • pp.500-510
    • /
    • 2017
  • Recently Lee et al. proposed an improved symmetric key-based remote user authentication scheme to eliminate the security weaknesses of Kumari et al.'s scheme. They hence claimed that their scheme is secure to various well-known attacks. However, we found that Lee et al.'s scheme is still insecure against outsider attack, smart card stolen and off-line password guessing attack. To overcome these security vulnerabilities, we propose an enhanced authentication scheme with key-agreement which is based on the fuzzy-extractor. Furthermore, we prove that the proposed scheme is more secure, and that it serves to gratify all of the required security properties. Finally, we compare the performance and functionality of the proposed scheme with those of previous schemes.

Group Key Agreement for Mobile Devices in Different Cells (서로 다른 셀의 모바일 장치간의 그룹키 동의 프로토콜)

  • Kim Jeeyeon;Choi Yeonyi;Kim Seungjoo;Won Dongho
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.6
    • /
    • pp.651-658
    • /
    • 2005
  • Mobile communication has become more pervasive and it is considered as one of main concerns oi conferencing, multi-user games and etc. in mobile environment. These applications need to secure communication in group. Most of the published protocols are based on model which consists of a stationary base station and a cluster of mobile devices. In this paper, we have focused on the extended model of which participants are several base stations and mobile devices in different cells. We present a new group key protocol among mobile devices in different cells and analyze its security And we also look at how password authentication can be used to our group key agreement protocol. The mobile device's computing load may be reduced by using password authentication.

Efficient Fault Tolerant Key Agreement for Ad-Hoc (Ad-Hoc 네트워크에서 링크 장애를 고려한 효율적인 키 협정 방법)

  • Lee, Young-Jun;Min, Sung-Gi;Lee, Sung-Jun
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.1
    • /
    • pp.45-53
    • /
    • 2004
  • Ad-Hoc network is wireless network architecture without infrastructure. We encounter new types of security problems in Ad-Hoc networks because such networks have little or no support from infrastructure. Thus, wireless communications need security mechanisms in order to guarantee the integrity and the privacy of the communication, as well as the authentication of the entities involved. Many practical systems have been proposed. The most familiar system is the Diffie-Hellman key distribution system. This algorithm allows the establishment of a cryptographic secret key between two entities. If more than two users want to compute a common key, then a group key agreement system is used. This paper discusses several group key agreement systems and presents two efficient fault tolerant methods to perform successful group key agreement.

  • PDF

AKA-PLA: Enhanced AKA Based on Physical Layer Authentication

  • Yang, Jing;Ji, Xinsheng;Huang, Kaizhi;Yi, Ming;Chen, Yajun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3747-3765
    • /
    • 2017
  • Existing authentication mechanisms in cellular mobile communication networks are realized in the upper layer by employing cryptographic techniques. Authentication data are broadcasted over the air in plaintext, enabling attackers to completely eavesdrop on the authentication and get some information about the shared secret key between legitimate nodes. Therefore, reusing the same secret key to authenticate several times results in the secret key's information leakage and high attacking rate. In this paper, we consider the most representative authentication mechanism, Authentication and Key Agreement (AKA), in cellular communication networks and propose an enhanced AKA scheme based on Physical Layer Authentication (AKA-PLA). Authentication responses generated by AKA are no longer transmitted in plaintext but masked by wireless channel characteristics, which are not available to adversaries, to generate physical layer authentication responses by a fault-tolerant hash method. The authenticator sets the threshold according to the authentication requirement and channel condition, further verifies the identity of the requester based on the matching result of the physical layer authentication responses. The performance analyses show that the proposed scheme can achieve lower false alarm rate and missing rate, which are a pair of contradictions, than traditional AKA. Besides, it is well compatible with AKA.

A Lightweight Pseudonym Authentication and Key Agreement Protocol for Multi-medical Server Architecture in TMIS

  • Liu, Xiaoxue;Li, Yanping;Qu, Juan;Ding, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.924-944
    • /
    • 2017
  • Telecare Medical Information System (TMIS) helps the patients to gain the health monitoring information at home and access medical services over the mobile Internet. In 2015, Das et al proposed a secure and robust user AKA scheme for hierarchical multi-medical server environment in TMIS, referred to as DAKA protocol, and claimed that their protocol is against all possible attacks. In this paper, we first analyze and show DAKA protocol is vulnerable to internal attacks, impersonation attacks and stolen smart card attack. Furthermore, DAKA protocol also cannot provide confidentiality. We then propose a lightweight pseudonym AKA protocol for multi-medical server architecture in TMIS (short for PAKA). Our PAKA protocol not only keeps good security features declared by DAKA protocol, but also truly provides patient's anonymity by using pseudonym to protect sensitive information from illegal interception. Besides, our PAKA protocol can realize authentication and key agreement with energy-saving, extremely low computation cost, communication cost and fewer storage resources in smart card, medical servers and physical servers. What's more, the PAKA protocol is proved secure against known possible attacks by using Burrows-Abadi-Needham (BAN) logic. As a result, these features make PAKA protocol is very suitable for computation-limited mobile device.

Secure AKA(Authentication and Key Agreement) Protocol for Binary CDMA Network (Binary CDMA 망을 위한 안전한 AKA 프로토콜)

  • Kim, Yong-Hee;Park, Mi-Ae;Cho, Jin-Woong;Lee, Hyeon-Seok;Lee, Jang-Yeon;Yi, Ok-Yeon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.1
    • /
    • pp.51-61
    • /
    • 2010
  • Koinonia system is designed to fully utilize the advantage of Binary CDMA so as to guarantee QoS in wireless networks. In this paper, we propose the new network structure based on this system and refer to it as BLAN(Binary CDMA LAN). Although BLAN is similar structure to IEEE 802.11 WLAN, it will ensure the fast handover and QoS. We also propose the AKA(Authentication and Key Agreement) protocol and Reauthentication protocol to be used for communication in BLAN. These protocols are securely and efficiently designed using the user identity module to support the more powerful authentication. Hence, BLAN, including the proposed protocols, will support the high mobility and security. In conclusion, we expect that BLAN can be applied to future infrastructure on special environment, and it can be helpful showing the new network model which alternate WLAN.

Secure Remote User Authentication Protocol against Privileged-Insider Attack (Privileged-Insider 공격에 안전한 원격 사용자 인증 프로토콜)

  • Lee, SungYup;Park, YoHan;Park, YoungHo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.4
    • /
    • pp.614-628
    • /
    • 2017
  • Recently, Due to the rapid development of the internet and IT technology, users can conveniently use various services provided by the server anytime and anywhere. However, these technologies are exposed to various security threat such as tampering, eavesdropping, and exposing of user's identity and location information. In 2016, Nikooghadam et al. proposed a lightweight authentication and key agreement protocol preserving user anonymity. This paper overcomes the vulnerability of Nikooghadam's authentication protocol proposed recently. This paper suggests an enhanced remote user authentication protocol that protects user's password and provides perfect forward secrecy.