• Title/Summary/Keyword: Austenitic Alloys

Search Result 68, Processing Time 0.022 seconds

Evaluation of High-Temperature Tensile Property of Diffusion Bond of Austenitic Alloys for S-CO2 Cycle Heat Exchangers (고온 S-CO2 사이클 열교환기용 스테인리스강 및 Fe-Cr-Ni 합금 확산 접합부의 고온 인장 특성평가)

  • Hong, Sunghoon;Sah, Injin;Jang, Changheui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1421-1426
    • /
    • 2014
  • To improve the inherent safety of the sodium-cooled fast reactor (SFR), the supercritical $CO_2$ ($S-CO_2$) Brayton cycle is being considered as an alternative power conversion system to steam the Rankine cycle. In the $S-CO_2$ system, a PCHE (printed circuit heat exchanger) is being considered. In this type of heat exchangers, diffusion bonding is used for joining the thin plates. In this study, the diffusion bonding characteristics of various austenitic alloys were evaluated. The tensile properties were measured at temperatures starting from the room temperature up to $650^{\circ}C$. For the 316H and 347H types of stainless steel, the tensile ductility was well maintained up to $550^{\circ}C$. However, the Incoloy 800HT showed lower strength and ductility at all temperatures. The microstructure near the bond line was examined to understand the reason for the loss of ductility at high temperatures.

Aging of Melt Spun Ribbons in Cu-Based Shape Memory Alloys at High Temperature (Melt Spinning된 Cu-Al-Ni-X계 형상기억합금 리본의 고온시효)

  • 최영택
    • Journal of Powder Materials
    • /
    • v.2 no.3
    • /
    • pp.208-215
    • /
    • 1995
  • The aging effects on the characteristics of the melt spun Cu based shape memory alloys have been investigated by the microhardness test, X-ray diffraction, differential scanning calorimetry, scanning electron microscopy and transmission electron microscopy. After aged for specific times, hardness of the ribbons began to increase and shape memory capacity diminished. At the initial stage of aging the austenitic transformation temperatures increased gradually, but at last became nearly constant: That is, the aging deteriorated the thermal stability. The increase in hardness was due to the formation of the $\gamma_2$ precipitates. The loss in the shape memory capacity was due to the decrement of solute atoms in the matrix by the formation of the $\gamma_2$ precipitates. In this study, it was confirmed that Mn is an effective element for Improving the thermal stability.

  • PDF

Strain Hardening Behaviour of PM Alloys with Heterogeneous Microstructure

  • Straffelini, Giovanni
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.928-929
    • /
    • 2006
  • Tensile stress-strain and dynamic acoustic resonance tests were performed on Fe-C-Ni-Cu-Mo high-strength steels, characterized by a heterogeneous matrix microstructure and the prevalence of open porosity. All materials display the first yielding phenomenon and, successively, a continuous yielding behavior. This flow behavior can be described by the Ludwigson equation and developes through three stages: the onset of localized plastic deformation at the pore edges; the evolution of plastic deformation at the pore necks (where the austenitic Ni-rich phase is predominant); the spreading of plastic deformation in the interior of the matrix. The analytical modeling of the strain hardening behavior made it possible to obtain the boundaries between the different deformation stages.

  • PDF

Development of a duplex stainless steel for dry storage canister with improved chloride-induced stress corrosion cracking resistance

  • Chaewon Jeong;Ji Ho Shin;Byeong Seo Kong;Junjie Chen;Qian Xiao;Changheui Jang;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2131-2140
    • /
    • 2024
  • The chloride-induced stress corrosion cracking (CISCC) is one of the major integrity concerns in dry storage canisters made of austenitic stainless steels (ASSs). In this study, an advanced duplex stainless steel (DSS) with a composition of Fe-19Cr-4Ni-2.5Mo-4.5Mn (ADCS) was developed and its performance was compared with that of commercial ASS and DSS alloys. The chemical composition of ADCS was determined to obtain greater pitting and CISCC resistance as well as a proper combination of strength and ductility. Then, the thermomechanical processing (TMP) condition was applied, which resulted in higher strength than ASSs (304L SS and 316L SS) and better ductility than DSSs (2101 LDSS and 2205 DSS). The potentiodynamic polarization and electrochemical impedance spectra (EIS) results represented the better pitting corrosion resistance of ADCS compared to 304L SS and 316L SS by forming a better passive layer. The CISCC tests using four-point loaded specimens showed that cracks were initiated at 24 h for 304L SS and 144 h for 316L SS, while crack was not found until 1008 h for ADCS. Overall, the developed alloy, ADCS, showed better combination of CISCC resistance and mechanical properties as dry storage canister materials than commercial alloys.

The Effect of Vandium on the microstructure and Elevated Temperature Sliding Wear Resistance of Fe-20Cr-1.7C-1Si-xV Hardfacing Alloy (Fe-20Cr-1.7C-1Si-xV 경면처리 합금의 미세조직과 고온 Sliding 마모저항성에 미치는 Vanadium의 영향)

  • Kim, Jun-Gi;Kim, Geun-Mo;Lee, Deok-Hyeon;Jang, Se-Gi;Gang, Seong-Gun;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.969-974
    • /
    • 1998
  • The effect of vanadium, which is known to decrease the stacking fault energy of Fe-base alloys, on the microstructure and elevated temperature sliding wear resistance of Fe-20Cr- 1.7C- 1Si alloy was investigated. The maximum amount of vanadium maintaining the austenitic matrix seems to be about 3wt.% in Fe-20Cr- 1.7C-1Si-xV (x = 0, 1, 3, 6. lOwt.%) alloys and the austenitic alloys showed better wear resistance than ferritic alloys. It was considered to be due to the low stacking fault energy and $\gamma->\alpha$ strain-induced phase transformation at rmm temperature. It was shown from elevated temperature sliding tests up to .$225^{\circ}C$ that the addition of vanadium increases the temperature, at which the transition from oxidative wear to adhesive wear occur, and the amount of d formed at $225^{\circ}C$. Thus, it was considered that the addition of vanadium improves the elevated temperature sliding wear resistance of Fe-20Cr- 1.7C - 1Si by reducing the increasing rate of stacking fault energy with temperature and by increasing Ma temperature.

  • PDF

A Study on the Cracking Behavior in the Welds of Ni-Cr-Fe and Ni-Fe-Cr-Mo Alloys Part I : Solidification Cracking in the Fusion Zone (Ni-Cr-Fe 및 Ni-Fe-Cr-Mo계 합금의 용접부 균열특성에 관한 연구 Part I : 용착금속의 응고균열)

  • 김희봉;이창희
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.78-89
    • /
    • 1997
  • This study has evaluated the weld metal solidification cracking behavior of several Ni base superalloys (Incoloy 825, Inconel 718 and Inconel 600). Austenitic stainless steels(304, 310S) were also included for comparison. In addition, a possible mechanism of solidification cracking in the fusion zone was suggested based on the extensive microstructural examinations with SEM, EDAX, TEM, SADP and AEM. The solidification cracking resistance of Ni base superalloys was found to be far inferior to that of austenitic stainless steels. The solidification cracking of Incoloy 825 and Inconel 718 was believel to be closely related with the Laves-austenite (Ti rich in 825 and Nb rich in 718) and MC-austenite eutectic phases formed along the grain boundaries during solidification. Cracking in Inconel 600 was always found along the grain boundaries which were enriched with Ti and P. Further, solidifidcation cracking resistance was dependent not only upon the type of love melting phases but also on the amount of the phases along the solidification grain boundaries.

  • PDF

Manufacturing of Cu-26.7Zn-4.05Al(wt.%) Shape Memory Alloy Using Spark Plasma Sintering (Spark Plasma Sintering을 이용한 Cu-26.7Zn-4.05Al(wt.%) 형상기억합금의 제조)

  • Park, No-Jin;Lee, In-Sung;Cho, Kyeong-Sik;Kim, Sung-Jin
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.352-359
    • /
    • 2003
  • In order to control the grain size, the spark plasma sintering technique is applied for the manufacturing of Cu-26.7Al-4.05AI(wt.%) shape memory alloy with pure Cu, Zn, and Al element powders. The sintering processes were carried out under different atmospheres. The sintered bodies were denser under Ar or Ar+4%$H_2$gas atmosphere than under vacuum. With use of small-sized powders, a very small average grain size of 2∼3 $\mu\textrm{m}$ was obtained, but the single phase was not formed. With the large-sized powders the single austenitic phase was observed with the average grain size of $70∼72\mu\textrm{m}$. When the different size of raw powders was mixed, it is confirmed that the average grain size of the manufactured alloys was 15 $\mu\textrm{m}$ with single austenitic phase, but the distribution of grain size was not uniform.

Electrochemical Corrosion Damage Characteristics of Alumium Alloy and Stainless Steel with Sea Water Concentration (알루미늄 합금 및 스테인리스강의 해수 농도 변화에 따른 전기화학적 부식 손상 특성)

  • Park, Il-Cho;Kim, Young-Bok;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.259-265
    • /
    • 2017
  • 5000 series aluminium alloys and austenitic stainless steels have excellent corrosion resistance and sufficient strength, which are widely used as materials for marine equipment and their parts in the marine environment. The corrosion characteristics of materials are important factors for selecting the appropriate material due to fluid component changes in the estuarine and coastal areas where seawater and fresh water are mixed. Therefore, for 5083 Al alloy, STS304 and STS316L widely used in the marine environment, anodic polarization experiments were performed to compare the corrosion damage characteristics of each material by three kinds of solutions of 100 % tap water, 50 % tap water+50 % natural seawater and 100 % natural seawater. As a result of the anodic polarization experiments, aluminum alloy (5083) caused locally corrosion on the surface in the tap water, and corrosion damage occurred all over the surface when the seawater was included. Stainless steels (STS304 and STS316L) presented almost no corrosion damage in tap water, but they grew pitting corrosion damage with increasing seawater concentration. STS316L showed better corrosion resistance than STS304.

Corrosion Resistance and Low Friction Property of Sintered Steel Parts via Chromizing Treatment (크로마이징 처리 된 철계 소결 부품의 내식성 및 저 마찰특성)

  • Kim, Sang-Gweon;Park, Yong-Jin;Yeo, Kuk-Hyun;Lee, Jae-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.809-815
    • /
    • 2012
  • Recently, as the interest in improving energy efficiency has grown, the demand for vehicle and machine parts that are resistant in high temperature corrosive conditions and abrasive environments has increased. Pack chromizing treatment of sintered steels is a profitable method that satisfies both corrosion resistance and low friction properties. Since austenitic stainless steels have good corrosion resistance but low mechanical hardness, if they are replaced by sintered steel parts with pack chromizing treatment, all the desirable properties such as low price, easy molding, high hardness, low frictional coefficient, and high corrosion resistance, can be obtained. The higher corrosion resistance of the chromized parts over that of the austenitic stainless steels was acquired by coating chromium carbides and a thin chromium oxides layer on the surface. Moreover, the surface morphology of chromized parts, which were composed of chromium rich phases and hardened chromium carbides by diffusing and alloying, had a peak-and-valley shape so that the dimple effect by the wrinkled morphology and high hardness induced a low friction coefficient.

Endurance Life and Deformation Behavior under Thermo-mechanical Fatigue of Nb-added Heat Resistant Austenitic Stainless Steel (Nb 첨가 오스테나이트계 내열 스테인리스강의 열기계적 피로 수명 및 변형 거동)

  • Oh, Yong Jun;Park, Joong-Cheul;Yang, Won Jon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.541-548
    • /
    • 2011
  • Thermomechanical fatigue (TMF) behavior of heat resistant austenitic stainless steel was evaluated in the temperature range from 100$^{\circ}C$ to peak temperatures of 600 to 800$^{\circ}C$; The fatigue lives under TMF conditions were plotted against the plastic strain range and the dissipated energy per cycle. In the expression of the inelastic strain range versus fatigue life, the TMF data obtained at different temperature ranges were located close to a single line with a small deviation; however, when the dissipated energy per cycle, calculated from the area of the stress-strain hysteresis loops at the half of the fatigue life, was plotted against the fatigue life, the data showed greater scattering than the TMF life against the inelastic strain range. A noticeable stress relaxation in the stress-strain hysteresis curve took place at the peak temperatures higher than 700$^{\circ}C$, but all specimens in this study exhibited cyclic hardening behavior with TMF cycles. Recrystallization occurred during the TMF cycle concurrent with the formation of fine subgrains in the recrystallized region, which is considered to cause the cyclic hardening of the steel.