• Title/Summary/Keyword: Austenite Stainless Steel

Search Result 192, Processing Time 0.028 seconds

High Temperature Precipitation Behavior of High-Nitrogen Duplex Stainless Steel (고질소 2상 스테인리스강의 고온 석출거동)

  • Bae, Jong-In;Kim, Sung-Tae;Lee, Tae-Ho;Ha, Heon-Young;Kim, Sung-Joon;Park, Yong-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.93-103
    • /
    • 2011
  • Precipitation behavior of high-nitrogen duplex Fe-24Cr-7Mn-4Ni-4Mo-0.43N stainless steel aged at $850^{\circ}C$ was investigated using scanning transmission electron microscopy. Based on the analyses of selected area diffraction patterns, four kinds of precipitates (intermetallic sigma (${\sigma}$) and chi (${\chi}$), $Cr_2N$ and secondary austenite) were identified. At the ferrite/austenite phase boundary, the ${\sigma}$ phase and secondary austenite were formed via ${\alpha}{\rightarrow}{\gamma}+{\sigma}$ eutectoid reaction. The precipitation of $Cr_2N$ occurred at the austenite grain boundary as well as the interior of the ferrite. The intermetallic ${\chi}$ phase also formed within the ferrite and showed a cube-cube orientation relationship with the ferrite. Further aging produced a lamellar structure composed of $Cr_2N$ and austenite along the ferrite/austenite boundary and enhanced the precipitation of the ${\chi}$ phase. The crystallographic features of the precipitates were also examined in terms of the orientation relationship with the austenite or ferrite matrix.

Study on the hydrogen embrittlement crack susceptibility of stainless steel overlaid weld metal (1) (스테인레스강 Overlay용접부의 수소취화 균열감수성에 관한 연구 1)

  • 이영호
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.39-52
    • /
    • 1990
  • The research is to insure the soundness of the stainless steel overlaid weld metal(21/4Cr-IMo steel + SUS 309L) for a pressure vessel application. Detail studies were conducted for the PWHT influence on the micrstructure and intergranular corrosion characteristics of the overlaid weld metal as well as initiation of hydrogen embrittlement crack(or Disbonding) when welded metal are exposed to the hydrogen atmosphere. Hydrogen was experimentally charged to the overlaid weld metal in order to study PWHT effect on the susceptibility of hydrogen embrittlement crack. The results of this research are as follows: 1. At the bond region, austenite grain of the stainless steel side became coarsed and Cr23C6 type carbide was precipitated at the coarsed austenitic grain boundaries. Intergranular Corrosion width(by Straiss test) increased with increasing PWHT temperature and PWHT time.

  • PDF

Effects of Processing Time and Temperature on the Surface Properties of AISI 316L Stainless steel During Low Temperature Plasma Nitriding After Low Temperature Plasma Carburizing (AISI 316L stainless steel에 저온 플라즈마 침탄처리 후 질화처리 시 처리시간과 온도가 표면특성에 미치는 영향)

  • Lee, Insup
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.357-362
    • /
    • 2008
  • The 2-step low temperature plasma processes (the combined carburizing and post-nitriding) were carried out for improving both the surface hardness and corrosion resistance of AISI 316L stainless steel. The effects of processing time and temperature on the surface properties during nitriding step were investigated. The expanded austenite (${\gamma}_N$) was formed on all of the treated surface. The thickness of ${\gamma}_N$ was increased up to about $20{\mu}m$ and the thickness of entire hardened layer was determined to be about $40{\mu}m$. The surface hardness reached up to $1,200HV_{0.1}$ which is about 5 times higher than that of untreated sample ($250HV_{0.1}$). The thickness of ${\gamma}_N$ and concentration of N on the surface were increased with increasing processing time and temperature. The corrosion resistance in 2-step low temperature plasma processed austenitic stainless steels was enhanced more than that in the untreated austenitic stainless steels due to a high concentration of N on the surface.

Joint properties and Interface Analysis of Friction Stir Welded Dissimilar Materials between Austenite Stainless Steel and 6013 Al Alloy (마찰교반접합한 오스테나이트계 스테인리스강과 6013알루미늄 합금 이종 접합부의 접합 특성 및 계면 성질)

  • Lee, Won-Bae;Biallas, gehard;Schmuecker, Martin;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.23 no.5
    • /
    • pp.61-68
    • /
    • 2005
  • Dissimilar joining of Al 6013-T4 alloys and austenite stainless steel was carried out using friction stir welding technique. Microstructures near the weld zone and mechanical properties of the joint have been investigated. Microstructures in the stainless steel side were composed of the heat affected zone and the plastically deformed zone, while those in the Al alloy side were composed of the recrystallized zone including stainless steel particles, the thermo-mechanically affected zone and the heat affected zone. TEM micrographs revealed that the interface region was composed of the mixed layers of elongated stainless steel and ultra-fine grained Al alloy with lamella structure and intermetallic compound layer. Thickness of the intermetallic layer was approximately 300nm and was identified as the A14Fe with hexagonal close packed structure. Mechanical properties, such as tensile and fatigue strengths were lower than those of 6013 Al alloy base metal, because tool inserting location was deviated to Al alloy from the butt line, which resulted in the lack of the stirring.

Effect of Aging on the Microstructure and Mechanical Properties in Super Duplex Stainless Steel (슈퍼 2상 스테인리스강의 미세조직 및 기계적 성질에 미치는 시효의 영향)

  • Kim, Su-Chun;Kang, Chang-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.40-45
    • /
    • 2009
  • With the increase in the annealing temperature, the volume fraction of austenite phase increased and the volume fraction of ferrite phase decreased. In compliance with the addition of N, not only the volume fraction of austenite phase was increased but also the austenite structure was made larger. Volume fraction of ${\sigma}$ phase was increased by decreasing of the volume fraction of ferrite phase, with the increase in the aging time and in compliance with the addition of N. As increasing in volume fraction of ${\sigma}$ phase, tensile strength and hardness increased, while elongation and impact value decreased. Elongation slowly decreased and impact value rapidly decreased at the early stage of aging. By the added N, tensile strength, elongation, hardness and impact value was increased.

Effect of Deformation Temperature, Strain Rate and Grain Size on the Tensile Properties of 304L Stainless Steel (304L stainless Steel의 인장성질에 대한 변형온도, 변형속도 및 결정입도의 영향)

  • Kang, C.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.2
    • /
    • pp.20-31
    • /
    • 1990
  • This investigation has been carried out to make clear the effect of deformation temperature, strain rate and grain size on the tensile properties of 304L stainless steel. Tensile properties of the metastable austenitic 304L steel remarkably influenced by deformation temperature. Tensile strength increased with decreasing deformation temperature and the elongation showed maximum value near $40^{\circ}C$. In order to obtain the high elongation, a large amount of deformation is available in austenite before martensitic transformation and the martensite has to be induced gradually. Tensile strength and elongation increased with decreasing grain size. The temperature representing the maximum elongation shifted to low temperature and the peak width of elongation became broaden with decreasing austenite grain size. The volume fraction of strain induced martensite decreased with decreasing austenite grain size. As the strain rate increase, the temperature representing the maximum elongation value shifted to high temperature and volume fraction of strain induced martensite decreased.

  • PDF

Selective Corrosion of Socket Welds of Stainless Steel Pipes Under Seawater Atmosphere (해수분위기에서 스테인리스강 배관 소켓 용접부의 선택적 부식)

  • Boo, Myung-Hwan;Lee, Jang-Wook;Lee, Jong-Hoon
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.224-230
    • /
    • 2020
  • Stainless steel has excellent corrosion resistance. The drawback is that pitting occurs easily due to the concentration of chloride. In addition, corrosion of socket weld, which is structurally and chemically weaker than the other components of the pipe, occurs rapidly. Since these two phenomena overlap, pinhole leakage occurs frequently in the seawater pipe socket welds made of stainless steel at the power plants. To analyze this specific corrosion, a metallurgical analysis of the stainless steel socket welds, where the actual corrosion occurred during the power plant operation, was performed. The micro-structure and chemical composition of each socket weld were analyzed. In addition, selective corrosion of the specific micro-structure in a mixed dendrite structure comprising γ-austenite (gamma-phase iron) and δ-ferrite (iron at high temperature) was investigated based on the characteristic micro-morphology and chemical composition of the corroded area. Finally, the different corrosion stages and characteristics of socket weld corrosion are summarized.

Microstructural Characteristics of Rapidly Solidified 304 Stainless Steel Powders Produced by Gas Atomization

  • Kim, Yeon-Wook
    • Journal of Korea Foundry Society
    • /
    • v.21 no.3
    • /
    • pp.187-191
    • /
    • 2001
  • 가스분무장치를 이용하여 제조된 304 stainless steel 분말의 미세응고조직 특성을 투과전자현미경으로 관찰하였다. 분말이 sandwich 현상으로 존재하도록 구리로 전기도금한 후 tripod jig 를 이용하여 기계적 연마하여 TEM 시편을 제작하였다. 이 방법으로 제조된 TEM 시편은 넓은 지역에서 200KV 로 가속된 전자가 투과하기에 충분히 얇았으며, 작은 분말의 경우에는 분말 전체를 관찰할 수 있었다. 제한시야회절법(SADP)을 이용하여 100 ${\mu}m$ 이하 분말의 결정구조를 조사한 결과에 따르면 가스분무법으로 급냉응고된 대부분의 분말은 austenite 상으로 응고되었으며, 모든 austenite 분말은 크기에 관계없이 쌍정조직 (twinstructure)이 발견되었으며 그 밀도 역시 아주 높았다. 그러나 직경이 2 ${\mu}m$ 이하의 분말에서는 큰 과냉 (supercooling) 효과에 의하여 준결정상인 bcc 상으로 응고됨을 발견하였다.

  • PDF

Influence of Annealing Temperature on Microstructure and Pitting Corrosion Behavior of the 27Cr-7Ni Hyper Duplex Stainless Steel

  • Jeon, Soon-Hyeok;Kim, Hye-Jin;Kong, Kyeong-Ho;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.48-55
    • /
    • 2014
  • Influence of annealing temperature on the microstructure and resistance to pitting corrosion of the hyper duplex stainless steel was investigated in acid and neutral chloride environments. The pitting corrosion resistance is strongly dependent on the microstructure, especially the presence of chromium nitrides ($Cr_2N$), elemental partitioning behavior and volume fraction of ferrite phase and austenite phase. Precipitation of deleterious chromium nitrides reduces the resistance to pitting corrosion due to the formation of Cr-depleted zone. The difference of PREN (Pitting Resistance Equivalent Number) values between the ferrite and austenite phases was the smallest when solution heat-treated at $1060^{\circ}C$. Based on the results of electrochemical tests and critical crevice temperature tests, the optimal annealing temperature is determined as $1060^{\circ}C$.

Effects of Nitrogen on Deformation Behavior of Duplex Stainless Steel (이상 스테인리스강의 변형거동에 미치는 질소의 영향)

  • 이형직;장영원
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.284-289
    • /
    • 2003
  • The effects of nitrogen on the deformation behavior of duplex stainless steel have been studied. The variation of strength was correlated with the characteristic microstructures pertaining to nitrogen. Analysis based on Hall-fetch relation confirmed that nitrogen enhances phase-boundary strengthening effect. The evolution of dislocation structure, slip traces and misorientation distribution during deformation were also characterized to elucidate the effect of nitrogen on inelastic deformation mechanism. It has been verified in this study that the higher nitrogen content provides a dual-phase microstructure with smaller strength difference between austenite and ferrite resulting into the earlier transfer of inelastic deformation from austenite to ferrite.