• Title/Summary/Keyword: Ausmpw+

Search Result 24, Processing Time 0.02 seconds

Development of Low Dissipative AUSM-type Scheme (Low Dissipative AUSM-type 수치기법 개발)

  • Kim, Kyu-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.12-26
    • /
    • 2004
  • A new treatment of cell-interface flux in AUSM-type methods is introduced to reduce the numerical dissipation. Through analysis of TVD limiters, a criterion for the more accurate prediction of cell-interface state is found out and M-AUSMPW+ is developed by determining the transferred property newly and appropriately within the criterion. The superiority of M-AUSMPW+ is clearly revealed in multi-dimensional flow problems. It can eliminate numerical dissipation effectively in a non-flow aligned grid system. As a result, M-AUSMPW+ is shown to be much more accurate and effective than other previous schemes in multi-dimensional problems. Through a stationary contact discontinuity, a vortex flow, a shock wave/boundary layer interactions and viscous shock tube problems, it is verified that accuracy of M-AUSMPW+ is improved.

EXTENSION OF AUSMPW+ SCHEME FOR TWO-FLUID MODEL

  • Park, Jin Seok;Kim, Chongam
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.209-219
    • /
    • 2013
  • The present paper deals with the extension of AUSMPW+ scheme into two-fluid model for multiphase flow. AUSMPW+ scheme is the improvement of a single-phase AUSM+ scheme by designing pressure-based weighting functions to prevent oscillations near a wall and shock instability after a strong shock. Recently, Kitamura and Liou assessed a family of AUSM-type schemes with two-fluid model governing equations [K. Kitamura and M.-S. Liou, Comparative study of AUSM-Family schemes in compressible multi-phase flow simulations, ICCFD7-3702 (2012)]. It was observed that the direct application of the single-phase AUSMPW+ did not provide satisfactory results for most of numerical test cases, which motivates the current study. It turns out that, by designing pressure-based weighting functions, which play a key role in controlling numerical diffusion for two-fluid model, problems reported in can be overcome. Various numerical experiments validate the proposed modification of AUSMPW+ scheme is accurate and robust to solve multiphase flow within the framework of two-fluid model.

Analysis of Oscillatory Behaviors in Shock Waves and Development of M-AUSMPW+ (충격파에서의 물성치 진동현상에 대한 분석과 M-AUSMPW+ 수치기법 개발)

  • Kim,Gyu-Hong;Lee,Gyeong-Tae;Kim,Jong-Am;No,O-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.21-29
    • /
    • 2002
  • The M-AUSMPW+ scheme that can capture shock waves exactly with monotonic characteristic is developed by analyzing the cause of oscillation in shock regions. Firstly shock-capturing characteristics of general FVS including the AUSM-type schemes are investigated in detail, according to the different between a cell-interface and a sonic transition position. The cause of oscillation is the improper numerical dissipation that could not represent the real physics. The M-AUSMPW+ could capture shocks exactly without oscillatory behaviors in considering the sonic transition position and an cell-interface position

Accurate and Robust Computations of Gas-Liquid Two-Phase Flows Part 1: Development of Shock-Stable Two-Phase Schemes (액체-기체 2상 유동장의 정확하고 강건한 해석 Part 1: 충격파 안정적인 2상 유동 수치기법의 개발)

  • Ihm, Seung-Won;Kim, Chong-Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.1-16
    • /
    • 2009
  • In this paper, we introduce two-phase versions of RoeM and AUSMPW+ schemes. Both schemes are originally developed for the gas dynamic problems, and have shown superior accuracy, efficiency and robustness. A new shock discontinuity sensing term is derived from the mixture equation of state, which is commonly used in the RoeM and AUSMPW+ schemes for the stable numerical flux calculation. The developed two-phase versions of the schemes are applied to several liquid-gas, large property discrepancy two-phase test problems, including several shock stability test problems. The results show that both schemes maintain the merits exhibited in gas dynamic problems even in two-phase flows.

Papers : The Speed of Sound for Reacting Gases and Effects of the Speed of Sound to Accuracy (논문 : 반응기체 해석을 위한 음속 및 음속에 따른 해의 정확성 연구)

  • Kim,Gyu-Hong;Lee,Gyeong-Tae;Kim,Jong-Am;No,O-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.9-19
    • /
    • 2002
  • Accuracy of AUSM-type schemes is closely related to a speed of in a cell-interface. Effect to accuracy by a speed of sound invastigated in the region of subsonic, transonic, and supersonic flows repectively. The advantage of the speed of sound in AUSMPW+ are summerized as the improvement of accuracy in capturing an oblique shock and the removal of an expansion shock to satisfy the entropy condition. They are proven by mathmatics and numerical result. Moreover AUSMPW+ is extended to a real gas flow and the speed of sound for equilibrium and nonequilibrium gas which could give exact soultions in an oblique shock is proposed.

Analysis of Oscillatory Behaviors in Shock Waves (충격파에서의 물성치 진동현상에 대한 분석)

  • Kim Kyu-Hong;Kim Chongam;Rho Oh-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.103-108
    • /
    • 2002
  • The M-AUSMPW+ scheme that can capture shock waves exactly with monotonic characteristics is modifided from AUSMPW+ by analyzing the cause of oscillation in shock regions. Firstly shock-capturing characteristics of general FVS including the AUSM-type schemes are investigated in detail, according to the difference between a cell-interface and a sonic transition position. The cause of oscillation is the improper numerical dissipation that could not represent the real Physics. The M-AUSMPW+ could capture shocks exactly without oscillatory behaviors in considering the sonic transition position and an cell-interface position.

  • PDF

Accurate and Efficient Re-evaulation of Cell-interface Convective Fluxes (다차원 압축성 유동의 격자 경계면 대류 플럭스 계산을 위한 새로운 수치기법 연구)

  • Yoon S. H.;Kim S. S.;Kim K. H.;Kim C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.3-6
    • /
    • 2004
  • In order to reduce the excessive numerical dissipation which is induced when a grid system is not aligned with a discontinuity, a new spatial treatment of cell-interface fluxes is introduced. The M-AUSMPW+ in this paper has the formula that has an additional procedure of re-defining transferred properties at a cell-interface, based on AUSMPW+. The newly defined transferred property could eliminate numerical dissipation effectively in non-flow aligned grid system of multi-dimensional flows.

  • PDF

Computations of Compressible Two-phase Flow using Accurate and Efficient Numerical Schemes

  • Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.13-17
    • /
    • 2006
  • RoeM and AUSMPW+ schemes are two of the most accurate and efficient schemes which are recently developed for the analysis of single phase gas dynamics. In this paper, we developed two-phase versions of these schemes for the analysis of gas-liquid large density ratio two-phase flow. We adopt homogeneous equilibrium model (HEM) using mass fraction to describe different two phases. In the Eulerian-Eulerian framework, HEM assumes dynamic and thermal equilibrium of the two phases in the same computational mesh. From the mixture equation of state (EOS), we derived new shock-discontinuity sensing term (SDST), which is commonly used in RoeM and AUSMPW+ for the stable numerical flux calculation. The proposed two-phase versions of RoeM and AUSMPW+ schemes are applied on several air-water two-phase test problems. In spite of the large discrepancy of material properties such as density, enthalpy, and speed of sound, the numerical results show that both schemes provide very satisfactory solutions.

  • PDF

Numerical Analysis of Hypersonic Shock-Shock Interaction using AUSMPW+ Scheme and Gas Reaction Models (AUSMPW+ 수치기법과 반응기체 모델을 이용한 극초음속 충격파-충격파 상호작용 수치해석)

  • Lee Joon-Ho;Kim Chongam;Rho Oh-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.29-34
    • /
    • 1999
  • A two-dimensional Navier-Stokes code based on AUSMPW+ scheme has been developed to simulate the hypersonic flowfield of hypersonic shock-shock interaction. AUSMPW+ scheme is a new hybrid flux splitting scheme, which is improved by introducing pressure-based weight functions to eliminate the typical drawbacks of AUSM-type schemes, such as non-monotone pressure solutions. To study the real gas effects, three different gas models are taken into account in this paper: perfect gas, equilibrium flow and nonequilibrium flow. It has been investigated how each gas model influences on the peak surface loading, such as wall pressure and wall heat transfer, and unsteady flowfield structure in the region of shock-shock interaction. With the results, the value of peak pressure is not sensitive to the real gas effects nor to the wall catalyticity. However, the value of peak heat transfer rates is affected by the real gas effects and the wall catalyticity. The structure of the flowfield also changes drastically in the presence of real gas effects.

  • PDF

Hypersonic flow calculations using AUSMPW+ and Shock-Aligned Grid Technique (AUSMPW+ 수치기법과 충격파 정렬 격자 기법을 이용한 극초음속 유동장 해석)

  • Kim K. H.;Kim C.;Rho O. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.73-78
    • /
    • 1999
  • 극초음속 유동장의 정확한 해석을 위해 AUSMPW+ 수치기법과 충격파 포착시 생기는 수치오차를 제거하기 위해 충격파 정렬 기법(Shock-Aligned Grid Technique)을 개발하였다. AUSMPW+ 수치기법은 자체 수치점성이 적은 수치기법으로 점성 경계층 계산시 정확한 계산결과를 보여주며 기존의 AUSM 계열이 가지는 문제점인 물성치의 진동 현상을 제거한 수치기법이다. 원통형과 무딘 물체 주위의 극초음속 유동장 해석을 통해 공력이 진동현상 없이 정확하게 계산됨을 확인하였다. 그리고 충격파 정렬 기법의 특성을 파악하기 위해 충격파 반사문제와 충격파-충격파 상호작용 문제를 해석하여 수치오차 없이 충격파를 포착할 수 있음을 보였다. 또한 화학적 평형 비평형 유동 영역까지 충격파 정렬 격자 기법을 확장하였다.

  • PDF