• Title/Summary/Keyword: Auditory Signal

Search Result 176, Processing Time 0.02 seconds

Speech Spectrum Enhancement Combined with Frequency-weighted Spectrum Shaping Filter and Wiener Filter (주파수가중 스펙트럼성형필터와 위너필터를 결합한 음성 스펙트럼 강조)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1867-1872
    • /
    • 2016
  • In the area of digital signal processing, it is necessary to improve the quality of the speech signal after removing the background noise which exists in a various real environments. The important thing to consider when removing the background noise acoustically is that to solve the problem, depending on the information of the human auditory mechanism is mainly the amplitude spectrum of the speech signal. This paper introduces the characteristics of a frequency-weighted spectrum shaping filter for the extraction of the amplitude spectrum of the speech signal with the primary purpose. Therefore, this paper proposes an algorithm using the methods of a Wiener filter and the frequency-weighted spectrum shaping filter according to the acoustic model, after extracted the amplitude spectral information in the noisy speech signal. The spectral distortion (SD) output of the proposed algorithm is experimentally improved more than 5.28 dB compared to a conventional method.

Quality Improvement of Karaoke Mode in SAOC using Cross Prediction based Vocal Estimation Method (교차 예측 기반의 보컬 추정 방법을 이용한 SAOC Karaoke 모드에서의 음질 향상 기법에 대한 연구)

  • Lee, Tung Chin;Park, Young-Cheol;Youn, Dae Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.227-236
    • /
    • 2013
  • In this paper, we present a vocal suppression algorithm that can enhance the quality of music signal coded using Spatial Audio Object Coding (SAOC) in Karaoke mode. The residual vocal component in the coded music signal is estimated by using a cross prediction method in which the music signal coded in Karaoke mode is used as the primary input and the vocal signal coded in Solo mode is used as a reference. However, the signals are extracted from the same downmix signal and highly correlated, so that the music signal can be severely damaged by the cross prediction. To prevent this, a psycho-acoustic disturbance rule is proposed, in which the level of disturbance to the reference input of the cross prediction filter is adapted according to the auditory masking property. Objective and subjective test were performed and the results confirm that the proposed algorithm offers improved quality.

A Study on the Measure to Maximize the Effects of Functional Games in Relation to the Changes in Visual and Auditory Stimulations (시각 및 청각 자극 변화에 따른 기능성 게임의 효능 극대화 방안 연구)

  • Shin, Jeong-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.147-153
    • /
    • 2013
  • Functional game, which is the combination of play and learning and a futuristic tool, can minimize the dysfunction and maximize the proper functions, and furthermore, has taken root as a new alternative that can change the game industry and game culture. Recently, the focus of game and education markets is shifting to the development of more advanced learning contents, rather than emphasizing the self-control and motivation of users. Along with that, the game market has excluded the socially dysfunctional elements, such as the addiction and learning disabilities, and has witnessed a diversification into the human-friendly entertainment business that emphasizes the mental and physical health and pursues scientific educational effects. In addition, functional games are expanding its reach from the professional sectors - such as medical aide/medical learning, military simulation, health, auxiliary tools, special education and learning tools - to the realm of routine education, mental health, etc., and has seen a steady growth. However, most functional games, which are being currently planned and developed to cope with the special characteristics of the market, have not undergone accurate scientific assessment of their functions and have not proven their effectiveness. An overwhelming proportion of the functional games are being developed based on the intuition and experience of game developers. Moreover, the type of games, which involve the repetition of simple tasks or take the form of simple puzzles, cannot effectively combine the practically interesting factors and the learning effects. Most games incorporate unscientific methods leading to the vague anticipation of improvement in functions, rather than the assessment of human functions. In this paper, a study was conducted to present the measures that could maximize the effects of functional games in relation to the changes in the visual and auditory stimulations in order to maximize the effects of functional games, i,e., the immersion and concentration. To compare the degree of effects arising from the visual stimulation, the functional game contents made in the form of 2D and 3D were utilized. In addition. ultra sound and 3-dimensional functional game contents were utilized to compare the degree of effects resulting from the changes in the auditory stimulation. The brainwave of the users were measured while conducting the experiments related to the response to the changes in visual and auditory stimulations in 3 steps, and the results of the analysis were compared.

A research on the media player transferring vibrotactile stimulation from digital sound (디지털 음원의 촉각 자극 전이를 위한 미디어 플레이어에 대한 연구)

  • Lim, Young-Hoon;Lee, Su-Jin;Jung, Jong-Hwan;Ha, Ji-Min;Whang, Min-Cheol;Park, Jun-Seok
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.881-886
    • /
    • 2007
  • This study was to develope a vibrotactile display system using windows media player from digital audio signal. WMPlayer10SDK system which was plug-in tool by microsoft windows media player provided its video and audio signal information. The audio signal was tried to be change into vibrotactile display. Audio signal had 4 sections such as 8bit, 16bit, 24bit, and 32bit. Each section was computed its frequency and vibrato scale. And data was transferred to 38400bps network port(COM1) for vibration. Using this system was able to develop the music suit which presented tactile feeling of music beyond sound. Therefore, it may provide cross modal technology for fusion technology of human senses.

  • PDF

Design and Implementation of an Emotion Recognition System using Physiological Signal (생체신호를 이용한 감정인지시스템의 설계 및 구현)

  • O, Ji-Soo;Kang, Jeong-Jin;Lim, Myung-Jae;Lee, Ki-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.57-62
    • /
    • 2010
  • Recently in the mobile market, the communication technology which bases on the sense of sight, sound, and touch has been developed. However, human beings uses all five - vision, auditory, palatory, olfactory, and tactile - senses to communicate. Therefore, the current paper presents a technology which enables individuals to be aware of other people's emotions through a machinery device. This is achieved by the machine perceiving the tone of the voice, body temperature, pulse, and other biometric signals to recognize the emotion the dispatching individual is experiencing. Once the emotion is recognized, a scent is emitted to the receiving individual. A system which coordinates the emission of scent according to emotional changes is proposed.

A Helmet-type MEG System with $1^{st}$ order SQUID Gradiometer Located in Vacuum (진공조에 위치한 1차 SQUID 미분계를 이용한 헬멧형 뇌자도 장치의 제작)

  • Yu, K.K.;Kim, K.;Lee, Y.H.;Kim, J.M.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.78-82
    • /
    • 2009
  • We have fabricated a helmet type magnetoencephalogrphy(MEG) with a $1^{st}$ order gradiometer in vacuum to improve the signal-to-noise ratio(SNR) and the boil-off rate of liquid helium(LHe). The axial type first-order gradiometer was fabricated with a double relaxation oscillation SQUID(DROS) sensor which was directly connected with a pickup coil. The neck space of LHe dewar was made to be smaller than that of a conventional dewar, but the LHe boil-off ratio appeared to increase. To reduce the temperature of low Tc SQUID sensor and pickup coil to 9 K, a metal shield made of, such as copper, brass or aluminum, have been usually used for thermal transmission. But the metal shield exhibited high thermal noise and eddy current fluctuation. We quantified the thermal noise and the eddy current fluctuation of metal. In this experiment, we used the bobbin which was made of an alumina to wind Nb superconductive wire for pickup coil and the average noise of coil-in-vacuum type MEG system was $3.5fT/Hz^{1/2}$. Finally, we measured the auditory evoked signal to prove the reliability of coil-in-vacuum type MEG system.

  • PDF

Characteristics of Superconductive Pb shield for a Whole Head MEG System (헬멧형 뇌자도 장치로의 활용을 위한 Pb 초전도 차폐의 특성)

  • Yu, K.K.;Kim, K.;Lee, Y.H.;Kwon, H.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.30-35
    • /
    • 2009
  • We have investigated the characteristics of a superconductive Pb shield for hemispherical shape and plate to improving signal-to-noise ratio(SNR) of biomagnetism. We measured the shielding factor for the position of helmet shape Pb and for changing the distance from Pb surface. To make a uniform magnetic field, a $1.5m{\times}1.5m$ set of the helmholtz coils activated at several frequencies. The shielding factor of hemispherical shape Pb was from 20 to 57 dB and of Pb plate was about $6{\sim}26dB$ as a function of distance from the lead surface. The shielding factor was rapidly reduced as increasing the distance from Pb surface. The white noise of superconductive quantum interference device(SQUID) with a superconductive shield was about $12fT/Hz^{1/2}$ at 1 Hz, $7fT/Hz^{1/2}$ at 100 Hz. The white noise was more increased about two times than conventional SQUID system without Pb shielding. An auditory signal was measured by first order gradiometer and magnetometer with Pb superconductive shield and compared the SNR. The SQUID system with Pb shield had better performance at low frequency noise level.

  • PDF

Subjective Responses for the Fire Signal Sound of Acoustic Reporting Equipment Depending on Visual Information (시각정보 변화에 따른 음향통보장치 신호음의 청감반응)

  • Song, Hyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.313-319
    • /
    • 2005
  • Instruction and prevention of the safety for a fire have been performed continuously by nation. However, the accident due to a fire is not decreasing and causes a serious calamity to people. It is at the initial stage of fire burning that the most effective way to reduce damage is to evacuate and fight a fire. When a fire burns, the equipments reporting to other person or organization concerned are called 'acoustic reporting equipment'. Among those equipments reporting to person, 'a fire bell' is the easiest equipment to approach. Observing the behaviors of people when a fire burning, some are in a quiet indoor, some in a room with other people, some in a square with many people and some in indoor filled with smoke etc. This study aims to find out an acoustic reporting signal appropriate for visual information. For the experiments, visual-auditory experiments were performed through reporting signals and visual informations with several situations that is able to be faced at when a fire burns.

An Adaptive Speech Enhancement System Using Lateral Inhibition and Time-Delay Neural Network (상호억제와 시간지연 신경회로망을 사용한 적응적인 음성강조시스템)

  • Choi, Jae-Seung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.95-102
    • /
    • 2008
  • This paper proposes an adaptive speech enhancement system based on an auditory system to enhance speech that is degraded by various background noises. As such, the proposed system detects voiced and unvoiced sections, adaptively adjusts the coefficients for both the lateral inhibition and the amplitude component according to the detected sections for each input fame, then reduces the noise signal using a time-delay neural network. Based on measuring the signal-to-noise ratio, experiments confirm that the proposed system is effective for speech degraded by various noises.

Sound Metric Design for Quantification of Door Closing Sound Utilizing Physiological Acoustics (생리음향을 이용한 도어 닫힘음의 정량적 평가를 위한 새로운 음질요소의 개발)

  • Shin, Tae-Jin;Lee, Seung-Min;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.73-83
    • /
    • 2013
  • In previous works, psychoacoustic parameters have been used for objective quantification. However, these parameters do not agree well with subjective assessment. Therefore, the correlation between psychoacoustic parameters and the subjective rating of door closing sounds of sampled cars is low, and it is not sufficient to use psychoacoustic parameters as an objective metric to quantify the sound quality of door closing sounds. In this paper, a new method is proposed to objectively quantify the sound quality based on physiological acoustics and statistical signal processing. The gammatone filter, as a pre-processing, is used in models of the auditory system and kurtosis, which is the fourth-order moment of temporal signal, and is used to extract information about sound quality quantification for door closing sounds. The new metric obtained through the proposed method is highly correlated with subjective rating, and it is successfully applied to the quantification of the sound quality of door closing sounds.