• Title/Summary/Keyword: Audio event classification

Search Result 14, Processing Time 0.018 seconds

Convolutional Neural Network based Audio Event Classification

  • Lim, Minkyu;Lee, Donghyun;Park, Hosung;Kang, Yoseb;Oh, Junseok;Park, Jeong-Sik;Jang, Gil-Jin;Kim, Ji-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2748-2760
    • /
    • 2018
  • This paper proposes an audio event classification method based on convolutional neural networks (CNNs). CNN has great advantages of distinguishing complex shapes of image. Proposed system uses the features of audio sound as an input image of CNN. Mel scale filter bank features are extracted from each frame, then the features are concatenated over 40 consecutive frames and as a result, the concatenated frames are regarded as an input image. The output layer of CNN generates probabilities of audio event (e.g. dogs bark, siren, forest). The event probabilities for all images in an audio segment are accumulated, then the audio event having the highest accumulated probability is determined to be the classification result. This proposed method classified thirty audio events with the accuracy of 81.5% for the UrbanSound8K, BBC Sound FX, DCASE2016, and FREESOUND dataset.

Audio Event Classification Using Deep Neural Networks (깊은 신경망을 이용한 오디오 이벤트 분류)

  • Lim, Minkyu;Lee, Donghyun;Kim, Kwang-Ho;Kim, Ji-Hwan
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.27-33
    • /
    • 2015
  • This paper proposes an audio event classification method using Deep Neural Networks (DNN). The proposed method applies Feed Forward Neural Network (FFNN) to generate event probabilities of ten audio events (dog barks, engine idling, and so on) for each frame. For each frame, mel scale filter bank features of its consecutive frames are used as the input vector of the FFNN. These event probabilities are accumulated for the events and the classification result is determined as the event with the highest accumulated probability. For the same dataset, the best accuracy of previous studies was reported as about 70% when the Support Vector Machine (SVM) was applied. The best accuracy of the proposed method achieves as 79.23% for the UrbanSound8K dataset when 80 mel scale filter bank features each from 7 consecutive frames (in total 560) were implemented as the input vector for the FFNN with two hidden layers and 2,000 neurons per hidden layer. In this configuration, the rectified linear unit was suggested as its activation function.

Intelligent User Pattern Recognition based on Vision, Audio and Activity for Abnormal Event Detections of Single Households

  • Jung, Ju-Ho;Ahn, Jun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.59-66
    • /
    • 2019
  • According to the KT telecommunication statistics, people stayed inside their houses on an average of 11.9 hours a day. As well as, according to NSC statistics in the united states, people regardless of age are injured for a variety of reasons in their houses. For purposes of this research, we have investigated an abnormal event detection algorithm to classify infrequently occurring behaviors as accidents, health emergencies, etc. in their daily lives. We propose a fusion method that combines three classification algorithms with vision pattern, audio pattern, and activity pattern to detect unusual user events. The vision pattern algorithm identifies people and objects based on video data collected through home CCTV. The audio and activity pattern algorithms classify user audio and activity behaviors using the data collected from built-in sensors on their smartphones in their houses. We evaluated the proposed individual pattern algorithm and fusion method based on multiple scenarios.

Towards Low Complexity Model for Audio Event Detection

  • Saleem, Muhammad;Shah, Syed Muhammad Shehram;Saba, Erum;Pirzada, Nasrullah;Ahmed, Masood
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.175-182
    • /
    • 2022
  • In our daily life, we come across different types of information, for example in the format of multimedia and text. We all need different types of information for our common routines as watching/reading the news, listening to the radio, and watching different types of videos. However, sometimes we could run into problems when a certain type of information is required. For example, someone is listening to the radio and wants to listen to jazz, and unfortunately, all the radio channels play pop music mixed with advertisements. The listener gets stuck with pop music and gives up searching for jazz. So, the above example can be solved with an automatic audio classification system. Deep Learning (DL) models could make human life easy by using audio classifications, but it is expensive and difficult to deploy such models at edge devices like nano BLE sense raspberry pi, because these models require huge computational power like graphics processing unit (G.P.U), to solve the problem, we proposed DL model. In our proposed work, we had gone for a low complexity model for Audio Event Detection (AED), we extracted Mel-spectrograms of dimension 128×431×1 from audio signals and applied normalization. A total of 3 data augmentation methods were applied as follows: frequency masking, time masking, and mixup. In addition, we designed Convolutional Neural Network (CNN) with spatial dropout, batch normalization, and separable 2D inspired by VGGnet [1]. In addition, we reduced the model size by using model quantization of float16 to the trained model. Experiments were conducted on the updated dataset provided by the Detection and Classification of Acoustic Events and Scenes (DCASE) 2020 challenge. We confirm that our model achieved a val_loss of 0.33 and an accuracy of 90.34% within the 132.50KB model size.

Classification of Phornographic Videos Based on the Audio Information (오디오 신호에 기반한 음란 동영상 판별)

  • Kim, Bong-Wan;Choi, Dae-Lim;Lee, Yong-Ju
    • MALSORI
    • /
    • no.63
    • /
    • pp.139-151
    • /
    • 2007
  • As the Internet becomes prevalent in our lives, harmful contents, such as phornographic videos, have been increasing on the Internet, which has become a very serious problem. To prevent such an event, there are many filtering systems mainly based on the keyword-or image-based methods. The main purpose of this paper is to devise a system that classifies pornographic videos based on the audio information. We use the mel-cepstrum modulation energy (MCME) which is a modulation energy calculated on the time trajectory of the mel-frequency cepstral coefficients (MFCC) as well as the MFCC as the feature vector. For the classifier, we use the well-known Gaussian mixture model (GMM). The experimental results showed that the proposed system effectively classified 98.3% of pornographic data and 99.8% of non-pornographic data. We expect the proposed method can be applied to the more accurate classification system which uses both video and audio information.

  • PDF

A Personal Video Event Classification Method based on Multi-Modalities by DNN-Learning (DNN 학습을 이용한 퍼스널 비디오 시퀀스의 멀티 모달 기반 이벤트 분류 방법)

  • Lee, Yu Jin;Nang, Jongho
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1281-1297
    • /
    • 2016
  • In recent years, personal videos have seen a tremendous growth due to the substantial increase in the use of smart devices and networking services in which users create and share video content easily without many restrictions. However, taking both into account would significantly improve event detection performance because videos generally have multiple modalities and the frame data in video varies at different time points. This paper proposes an event detection method. In this method, high-level features are first extracted from multiple modalities in the videos, and the features are rearranged according to time sequence. Then the association of the modalities is learned by means of DNN to produce a personal video event detector. In our proposed method, audio and image data are first synchronized and then extracted. Then, the result is input into GoogLeNet as well as Multi-Layer Perceptron (MLP) to extract high-level features. The results are then re-arranged in time sequence, and every video is processed to extract one feature each for training by means of DNN.

Classification of Phornographic Videos Using Audio Information (오디오 신호를 이용한 음란 동영상 판별)

  • Kim, Bong-Wan;Choi, Dae-Lim;Bang, Man-Won;Lee, Yong-Ju
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.207-210
    • /
    • 2007
  • As the Internet is prevalent in our life, harmful contents have been increasing on the Internet, which has become a very serious problem. Among them, pornographic video is harmful as poison to our children. To prevent such an event, there are many filtering systems which are based on the keyword based methods or image based methods. The main purpose of this paper is to devise a system that classifies the pornographic videos based on the audio information. We use Mel-Cepstrum Modulation Energy (MCME) which is modulation energy calculated on the time trajectory of the Mel-Frequency cepstral coefficients (MFCC) and MFCC as the feature vector and Gaussian Mixture Model (GMM) as the classifier. With the experiments, the proposed system classified the 97.5% of pornographic data and 99.5% of non-pornographic data. We expect the proposed method can be used as a component of the more accurate classification system which uses video information and audio information simultaneously.

  • PDF

Acoustic Monitoring and Localization for Social Care

  • Goetze, Stefan;Schroder, Jens;Gerlach, Stephan;Hollosi, Danilo;Appell, Jens-E.;Wallhoff, Frank
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.40-50
    • /
    • 2012
  • Increase in the number of older people due to demographic changes poses great challenges to the social healthcare systems both in the Western and as well as in the Eastern countries. Support for older people by formal care givers leads to enormous temporal and personal efforts. Therefore, one of the most important goals is to increase the efficiency and effectiveness of today's care. This can be achieved by the use of assistive technologies. These technologies are able to increase the safety of patients or to reduce the time needed for tasks that do not relate to direct interaction between the care giver and the patient. Motivated by this goal, this contribution focuses on applications of acoustic technologies to support users and care givers in ambient assisted living (AAL) scenarios. Acoustic sensors are small, unobtrusive and can be added to already existing care or living environments easily. The information gathered by the acoustic sensors can be analyzed to calculate the position of the user by localization and the context by detection and classification of acoustic events in the captured acoustic signal. By doing this, possibly dangerous situations like falls, screams or an increased amount of coughs can be detected and appropriate actions can be initialized by an intelligent autonomous system for the acoustic monitoring of older persons. The proposed system is able to reduce the false alarm rate compared to other existing and commercially available approaches that basically rely only on the acoustic level. This is due to the fact that it explicitly distinguishes between the various acoustic events and provides information on the type of emergency that has taken place. Furthermore, the position of the acoustic event can be determined as contextual information by the system that uses only the acoustic signal. By this, the position of the user is known even if she or he does not wear a localization device such as a radio-frequency identification (RFID) tag.

Comparison of Audio Event Detection Performance using DNN (DNN을 이용한 오디오 이벤트 검출 성능 비교)

  • Chung, Suk-Hwan;Chung, Yong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.571-578
    • /
    • 2018
  • Recently, deep learning techniques have shown superior performance in various kinds of pattern recognition. However, there have been some arguments whether the DNN performs better than the conventional machine learning techniques when classification experiments are done using a small amount of training data. In this study, we compared the performance of the conventional GMM and SVM with DNN, a kind of deep learning techniques, in audio event detection. When tested on the same data, DNN has shown superior overall performance but SVM was better than DNN in segment-based F-score.

A study on the waveform-based end-to-end deep convolutional neural network for weakly supervised sound event detection (약지도 음향 이벤트 검출을 위한 파형 기반의 종단간 심층 콘볼루션 신경망에 대한 연구)

  • Lee, Seokjin;Kim, Minhan;Jeong, Youngho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.24-31
    • /
    • 2020
  • In this paper, the deep convolutional neural network for sound event detection is studied. Especially, the end-to-end neural network, which generates the detection results from the input audio waveform, is studied for weakly supervised problem that includes weakly-labeled and unlabeled dataset. The proposed system is based on the network structure that consists of deeply-stacked 1-dimensional convolutional neural networks, and enhanced by the skip connection and gating mechanism. Additionally, the proposed system is enhanced by the sound event detection and post processings, and the training step using the mean-teacher model is added to deal with the weakly supervised data. The proposed system was evaluated by the Detection and Classification of Acoustic Scenes and Events (DCASE) 2019 Task 4 dataset, and the result shows that the proposed system has F1-scores of 54 % (segment-based) and 32 % (event-based).