• Title/Summary/Keyword: Audio Feature Extraction

Search Result 46, Processing Time 0.019 seconds

Development of Audio Melody Extraction and Matching Engine for MIREX 2011 tasks

  • Song, Chai-Jong;Jang, Dalwon;Lee, Seok-Pil;Park, Hochong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.164-166
    • /
    • 2012
  • In this paper, we proposed a method for extracting predominant melody of polyphonic music based on harmonic structure. Harmonic structure is an important feature parameter of monophonic signal that has spectral peaks at the integer multiples of its fundamental frequency. We extract all fundamental frequency candidates contained in the polyphonic signal by verifying the required condition of harmonic structure. Then, we combine those harmonic peaks corresponding to each extracted fundamental frequency and assign a rank to each after calculating its harmonic average energy. We run pitch tracking based on the rank of extracted fundamental frequency and continuity of fundamental frequency, and determine the predominant melody. For the query by singing/humming (QbSH) task, we proposed Dynamic Time Warping (DTW) based matching engine. Our system reduces false alarm by combining the distances of multiple DTW processes. To improve the performance, we introduced the asymmetric sense, pitch level compensation, and distance intransitiveness to DTW algorithm.

  • PDF

Emotion Recognition in Arabic Speech from Saudi Dialect Corpus Using Machine Learning and Deep Learning Algorithms

  • Hanaa Alamri;Hanan S. Alshanbari
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.9-16
    • /
    • 2023
  • Speech can actively elicit feelings and attitudes by using words. It is important for researchers to identify the emotional content contained in speech signals as well as the sort of emotion that resulted from the speech that was made. In this study, we studied the emotion recognition system using a database in Arabic, especially in the Saudi dialect, the database is from a YouTube channel called Telfaz11, The four emotions that were examined were anger, happiness, sadness, and neutral. In our experiments, we extracted features from audio signals, such as Mel Frequency Cepstral Coefficient (MFCC) and Zero-Crossing Rate (ZCR), then we classified emotions using many classification algorithms such as machine learning algorithms (Support Vector Machine (SVM) and K-Nearest Neighbor (KNN)) and deep learning algorithms such as (Convolution Neural Network (CNN) and Long Short-Term Memory (LSTM)). Our Experiments showed that the MFCC feature extraction method and CNN model obtained the best accuracy result with 95%, proving the effectiveness of this classification system in recognizing Arabic spoken emotions.

Content-Based Genre Classification Using Climax Extraction in Music (음악의 클라이맥스 추출을 이용한 내용 기반 장르 분류)

  • Ko, Il-Ju;Chung, Myoung-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.817-826
    • /
    • 2007
  • The existing a music genre classification research used signal feature of the part which gets 20 seconds interval of the random or the $40%{\sim}45%$ after in the music. This paper propose it to increase the accuracy of existing research to classify music genre using climax part in the music. Generally the music is divided to three parts; introduction, progress and climax. And the climax is the part which the music emphasizes and expresses the feature of the music best. So, we can get efficient result if the climax is used, when the music classify. We can get the climax in the music finding the tempo and node which uses FFT and the maximum waveform from each node. In this paper, we did a genre classification experiment which uses existing research method and proposing method. The existing method expressed 47% accuracy. And proposing method expressed 56% accuracy which is improved than existing method.

  • PDF

Hate Speech Detection Using Modified Principal Component Analysis and Enhanced Convolution Neural Network on Twitter Dataset

  • Majed, Alowaidi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.112-119
    • /
    • 2023
  • Traditionally used for networking computers and communications, the Internet has been evolving from the beginning. Internet is the backbone for many things on the web including social media. The concept of social networking which started in the early 1990s has also been growing with the internet. Social Networking Sites (SNSs) sprung and stayed back to an important element of internet usage mainly due to the services or provisions they allow on the web. Twitter and Facebook have become the primary means by which most individuals keep in touch with others and carry on substantive conversations. These sites allow the posting of photos, videos and support audio and video storage on the sites which can be shared amongst users. Although an attractive option, these provisions have also culminated in issues for these sites like posting offensive material. Though not always, users of SNSs have their share in promoting hate by their words or speeches which is difficult to be curtailed after being uploaded in the media. Hence, this article outlines a process for extracting user reviews from the Twitter corpus in order to identify instances of hate speech. Through the use of MPCA (Modified Principal Component Analysis) and ECNN, we are able to identify instances of hate speech in the text (Enhanced Convolutional Neural Network). With the use of NLP, a fully autonomous system for assessing syntax and meaning can be established (NLP). There is a strong emphasis on pre-processing, feature extraction, and classification. Cleansing the text by removing extra spaces, punctuation, and stop words is what normalization is all about. In the process of extracting features, these features that have already been processed are used. During the feature extraction process, the MPCA algorithm is used. It takes a set of related features and pulls out the ones that tell us the most about the dataset we give itThe proposed categorization method is then put forth as a means of detecting instances of hate speech or abusive language. It is argued that ECNN is superior to other methods for identifying hateful content online. It can take in massive amounts of data and quickly return accurate results, especially for larger datasets. As a result, the proposed MPCA+ECNN algorithm improves not only the F-measure values, but also the accuracy, precision, and recall.

Development of a Web-based Presentation Attitude Correction Program Centered on Analyzing Facial Features of Videos through Coordinate Calculation (좌표계산을 통해 동영상의 안면 특징점 분석을 중심으로 한 웹 기반 발표 태도 교정 프로그램 개발)

  • Kwon, Kihyeon;An, Suho;Park, Chan Jung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.10-21
    • /
    • 2022
  • In order to improve formal presentation attitudes such as presentation of job interviews and presentation of project results at the company, there are few automated methods other than observation by colleagues or professors. In previous studies, it was reported that the speaker's stable speech and gaze processing affect the delivery power in the presentation. Also, there are studies that show that proper feedback on one's presentation has the effect of increasing the presenter's ability to present. In this paper, considering the positive aspects of correction, we developed a program that intelligently corrects the wrong presentation habits and attitudes of college students through facial analysis of videos and analyzed the proposed program's performance. The proposed program was developed through web-based verification of the use of redundant words and facial recognition and textualization of the presentation contents. To this end, an artificial intelligence model for classification was developed, and after extracting the video object, facial feature points were recognized based on the coordinates. Then, using 4000 facial data, the performance of the algorithm in this paper was compared and analyzed with the case of facial recognition using a Teachable Machine. Use the program to help presenters by correcting their presentation attitude.

Dilated convolution and gated linear unit based sound event detection and tagging algorithm using weak label (약한 레이블을 이용한 확장 합성곱 신경망과 게이트 선형 유닛 기반 음향 이벤트 검출 및 태깅 알고리즘)

  • Park, Chungho;Kim, Donghyun;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.414-423
    • /
    • 2020
  • In this paper, we propose a Dilated Convolution Gate Linear Unit (DCGLU) to mitigate the lack of sparsity and small receptive field problems caused by the segmentation map extraction process in sound event detection with weak labels. In the advent of deep learning framework, segmentation map extraction approaches have shown improved performance in noisy environments. However, these methods are forced to maintain the size of the feature map to extract the segmentation map as the model would be constructed without a pooling operation. As a result, the performance of these methods is deteriorated with a lack of sparsity and a small receptive field. To mitigate these problems, we utilize GLU to control the flow of information and Dilated Convolutional Neural Networks (DCNNs) to increase the receptive field without additional learning parameters. For the performance evaluation, we employ a URBAN-SED and self-organized bird sound dataset. The relevant experiments show that our proposed DCGLU model outperforms over other baselines. In particular, our method is shown to exhibit robustness against nature sound noises with three Signal to Noise Ratio (SNR) levels (20 dB, 10 dB and 0 dB).