• Title/Summary/Keyword: Audio Encoder/Decoder

Search Result 31, Processing Time 0.026 seconds

The Implementation of Multi-Channel Audio Codec for Real-Time operation (실시간 처리를 위한 멀티채널 오디오 코덱의 구현)

  • Hong, Jin-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.91-97
    • /
    • 1995
  • This paper describes the implementation of a multi-channel audio codec for HETV. This codec has the features of the 3/2-stereo plus low frequency enhancement, downward compatibility with the smaller number of channels, backward compatibility with the existing 2/0-stereo system(MPEG-1 audio), and multilingual capability. The encoder of this codec consists of 6-channel analog audio input part with the sampling rate of 48 kHz, 4-channel digital audio input part and three TMS320C40 /DSPs. The encoder implements multi-channel audio compression using a human perceptual psychoacoustic model, and has the bit rate reduction to 384 kbit/s without impairment of subjective quality. The decoder consists of 6-channel analog audio output part, 4-channel digital audio output part, and two TMS320C40 DSPs for a decoding procedure. The decoder analyzes the bit stream received with bit rate of 384 kbit/s from the encoder and reproduces the multi-channel audio signals for analog and digital outputs. The multi-processing of this audio codec using multiple DSPs is ensured by high speed transfer of date between DSPs through coordinating communication port activities with DMA coprocessors. Finally, some technical considerations are suggested to realize the problem of real-time operation, which are found out through the implementation of this codec using the MPEG-2 layer II sudio coding algorithm and the use of the hardware architecture with commercial multiple DSPs.

  • PDF

Audio Transcoding for Audio Streams from a T-DTV Broadcasting Station to a T-DMB Receiver

  • Bang, Kyoung-Ho;Park, Young-Cheol;Seo, Jeong-Il
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.664-667
    • /
    • 2006
  • We propose an efficient audio transcoding algorithm that can convert audio streams from terrestrial digital television broadcasting service stations to those for terrestrial digital multimedia broadcasting hand-held receivers. The proposed algorithm avoids the complicated psychoacoustic analysis by calculating the scalefactors of the bit-sliced arithmetic coding encoder directly from the signal-to-noise ratio parameters of the AC-3 decoder. The bit-allocation process is also simplified by cascading the nested distortion control loop. Through subjective evaluation, it is shown that the proposed algorithm provides comparable audio quality to tandem coding but it requires much smaller complexity.

  • PDF

Microscopic DVS based Optimization Technique of Multimedia Algorithm (Microscopic DVS 기반의 멀티미디어 알고리즘 최적화 기법)

  • Lee Eun-Seo;Kim Byung-Il;Chang Tae-Gye
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.167-176
    • /
    • 2005
  • This paper proposes a new power minimization technique for the frame-based multimedia signal processing. The derivation of the technique is based on the newly proposed microscopic DVS(Dynamic Voltage Scaling) method, where, the operating frequency and the supply voltage levels are dynamically controlled according to the processing requirement for each frame of multimedia data. The multimedia signal processing algorithms are also redesigned and optimized to maximize the power saving efficiency of the microscopic DVS technology. The characterization of the mean/variance distribution of the processing load in the frame-based multimedia signal processing provides the major basis not only for the optimized application of the microscopic DVS technology but also for the optimization of the multimedia algorithms. The power saying efficiency of the proposed DVS approach is experimentally tested with the algorithms of MPEG-2 video decoder and MPEG-2 AAC audio encoder on the ARM9 RISC processor. The experimental results with the diverse MPEG-2 video and audio files show The average power saving efficiencies of 50$\%$ and 30$\%$, respectively. The results also agree very well with those of the analytic derivations.

Enhanced source controlled variable bit-rate scheme in a waveform interpolation coder (Source controlled variable bit-rate scheme을 이용한 파형 보간 부호화기의 음질 개선 기법)

  • Cho, Keun-Seok;Yang, Hee-Sik;Jeong, Sang-Bae;Hahn, Min-Soo
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.315-318
    • /
    • 2007
  • This paper proposes the methods to enhance the speech quality of source controlled variable bit-rate coder based on the waveform interpolation. The methods are to estimate and generate the parameters that are not transmitted from encoder to decoder by the repetition and extrapolation schemes. For the performance evaluation, the PESQ(Perceptual Evaluation of Speech Quality) scores are measured. The experimental results shows that our proposed method outperforms the conventional source controlled variable bit-rate coder. Especially, the performance of the extrapolation method is better than that of the repetition method.

  • PDF

Audio Signal Coding Using Wavelet Transform (웨이블렛 변환을 이용한 오디오 코딩)

  • Bae, Seok-Mo;Kim, Do-Hyoung;Chung, Jae-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.64-70
    • /
    • 1997
  • This paper is aimed to propose a new wavelet audio signal coding scheme which reduces the complexity of well-known MPEG(Moving Picture Expert Group)-Audio. The filters of MPEG0audio apply subband technique on the 16-bits PCM audio to aquire bitstream of subband sample using dynamic bit allocation. If we use the wavelet coefficients instead of subband samples and 6 bands which is less than 32 bands of MPEG-audio, the complexity can be reduced. A new audio signal compression algorithm in this paper is based on wavelet transform and the proposed algorithm is compared with MPEG-audio. At the bitrate of 256kbps, the proposed algorithm maintains the CD(Compact-disc) quality. We were able to reduce the about 40% of complexity at encoder and about 70% at decoder.

  • PDF

A Single-Chip Video/Audio CODEC for Low Bit Rate Application

  • Park, Seong-Mo;Kim, Seong-Min;Kim, Ig-Kyun;Byun, Kyung-Jin;Cha, Jin-Jong;Cho, Han-Jin
    • ETRI Journal
    • /
    • v.22 no.1
    • /
    • pp.20-29
    • /
    • 2000
  • In this paper, we present a design of video and audio single chip encoder/decoder for portable multimedia application. The single-chip called as video audio signal processor (VASP) consists of a video signal processing block and an audio single processing block. This chip has mixed hardware/software architecture to combine performance and flexibility. We designed the chip by partitioning between video and audio block. The video signal processing block was designed to implement hardware solution of pixel input/output, full pixel motion estimation, half pixel motion estimation, discrete cosine transform, quantization, run length coding, host interface, and 16 bits RISC type internal controller. The audio signal processing block is implemented with software solution using a 16 bits fixed point DSP. This chip contains 142,300 gates, 22 Kbits FIFO, 107 kbits SRAM, and 556 kbits ROM, and the chip size is $9.02mm{\times}9.06mm$ which is fabricated using 0.5 micron 3-layer metal CMOS technology.

  • PDF

A Complexity Reduction Method of MPEG-4 Audio Lossless Coding Encoder by Using the Joint Coding Based on Cross Correlation of Residual (여기신호의 상관관계 기반 joint coding을 이용한 MPEG-4 audio lossless coding 인코더 복잡도 감소 방법)

  • Cho, Choong-Sang;Kim, Je-Woo;Choi, Byeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.87-95
    • /
    • 2010
  • Portable multi-media products which can service the highest audio-quality by using lossless audio codec has been released and the international lossless codecs, MPEG-4 audio lossless coding(ALS) and MPEG-4 scalable lossless coding(SLS), were standardized by MPEG in 2006. The simple profile of MPEG-4 ALS, it supports up to stereo, was defined by MPEG in 2009. The lossless audio codec should have low-complexity in stereo to be widely used in portable multi-media products. But the previous researches of MPEG-4 ALS have focused on an improvement of compression ratio, a complexity reduction in multi-channels coding, and a selection of linear prediction coefficients(LPCs) order. In this paper, the complexity and compression ratio of MPEG-4 ALS encoder is analyzed in simple profile of MPEG-4 ALS, the method to reduce a complexity of MPEG-4 ALS encoder is proposed. Based on an analysis of complexity of MPEG-4 ALS encoder, the complexity of short-term prediction filter of MPEG-4 ALS encoder is reduced by using the low-complexity filter that is proposed in previous research to reduce the complexity of MPEG-4 ALS decoder. Also, we propose a joint coding decision method, it reduces the complexity and keeps the compression ratio of MPEG-4 ALS encoder. In proposed method, the operation of joint coding is decided based on the relation between cross-correlation of residual and compression ratio of joint coding. The performance of MPEG-4 ALS encoder that has the method and low-complexity filter is evaluated by using the MPEG-4 ALS conformance test file and normal music files. The complexity of MPEG-4 ALS encoder is reduced by about 24% by comparing with MPEG-4 ALS reference encoder, while the compression ratio by the proposed method is comparable to MPEG-4 ALS reference encoder.

Real-time Implementation of the AMR-WB+ Audio Coder using ARM Core(R) (ARM Core(R)를 이용한 AMR-WB+ 오디오 부호화기의 실시간 구현)

  • Won, Yang-Hee;Lee, Hyung-Il;Kang, Sang-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.119-124
    • /
    • 2009
  • In this paper, AMR-WB+ audio coder is implemented, in real-time, using Intel 400MHz Xscale PXA250 with 32bit RISC processor ARM9E-J(R)core. The assembly code for ARM9E-J(R)core is developed through the serial process of C code optimization, cross compile, assembly code manual optimization and adjusting the optimized code to Embedded Visual C++ platform. C code is trimmed on Visual C++ platform. Cross compile and assembly code manual optimization are performed on CodeWarrior with ARM compiler. Through these stages the code for both ARM EVM board and PDA is implemented. The average complexities of the code are 160.75MHz on encoder and 33.05MHz on decoder. In case of static link library(SLL), the required memories are 65.21Kbyte, 32.01Kbyte and 279.81Kbyte on encoder, decoder and common sources, respectively. The implemented coder is evaluated using 16 test vectors given by 3GPP to verify the bit-exactness of the coder.

Implementation of Audio Encoder and Decoder Using MPEG-2 AAC (MPEE-2 AAC 오디오 인코더 및 디코도 구현)

  • Hong J. W;Jang D. Y;Kim J. W.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.217-222
    • /
    • 1999
  • 본 논문에서는 멀티채널 오디오 부호화 방식인 MPEG-2 AAC(Advanced Audio Coding) 국제 표준을 수용한 AAC 인코더 및 디코더의 실시간 구현에 대해 기술한다. 범용 DSP 인 TMS320C6701 DSP를 이용한 하드웨어 플랫폼과 이 플랫폼에서 실시간으로 동작되는 인코더와 디코더 소프트웨어를 설계, 개발(MASIC 시스템)하였다. 구현한 MASIC 시스템은 오디오 입력 장치, 출력 장치, 인코더 보드, 그리고 디코더 보드로 구성되어 있으며, 개인용 컴퓨터의 PCI 슬롯을 이용하여 인코더의 경우 최대 6채널의 오디오를, 디코더의 경우 8채널의 오디오를 실시간 동작으로 처리할 수 있다. 인코더 및 디코더의 실시간 처리를 위한 소프트웨어 최적화 기술 및 인코더와 디코더의 연동시험에 대해서도 기술하며, 개인용 컴퓨터에서 실시간으로 수행되는 스테레오 AAC 디코더 소프트웨어의 개발 결과를 기술한다.

  • PDF

Optimization of MPEG-4 AAC Codec on PDA (휴대 단말기용 MPEG-4 AAC 코덱의 최적화)

  • 김동현;김도형;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.237-244
    • /
    • 2002
  • In this paper we mention the optimization of MPEG-4 VM (Moving Picture Expert Group-4 Verification Model) GA (General Audio) AAC (Advanced Audio Coding) encoder and the design of the decoder for PDA (Personal Digital Assistant) using MPEG-4 VM source. We profiled the VMC source and several optimization methods have applied to those selected functions from the profiling. Intel Pentium III 600 MHz PC, which uses windows 98 as OS, takes about 20 times of encoding time compared to input sample running time, with additional options, and about 10 times without any option. Decoding time on PDA was over 35 seconds for the 17 seconds input sample. After optimization, the encoding time has reduced to 50% and the real time decoding has achieved on PDA.