• Title/Summary/Keyword: Au-nanoparticle

Search Result 121, Processing Time 0.032 seconds

Detection of Molecules using the Nanoparticle Arrays (나노입자 배열을 이용한 분자 검출)

  • Ha, Dong-Han;Kim, Sang-Hun;Yun, Yong-Ju;Park, Hyung-Ju;Yun, Wan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1617-1622
    • /
    • 2008
  • We report a new molecular detection process which measures the changes in the plasmon resonance peaks of periodic Au nanoparticle arrays fabricated using the electron beam lithography. As the Au nanoparticle arrays are modified by the chemical reaction in solutions having various concentrations of a target molecule, both the position and intensity of the plasmon peak change in proportion to the concentration of the target molecule. We expect that the process developed in this work can be employed for fine tuning of the plasmon peak wavelength and also for the optical detection of various kinds of molecules. Moreover, this method may improve the measurement accuracy compared with existing approaches that use only one change (peak wavelength or peak intensity) as a readout value for the molecular detection.

  • PDF

Comparative Characteristics of Gold-Gold and Gold-Silver Nanogaps Probed by Raman Scattering Spectroscopy of 1,4-Phenylenediisocyanide

  • Kim, Kwan;Choi, Jeong-Yong;Shin, Dong-Ha;Lee, Hyang-Bong;Shin, Kuan-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2941-2948
    • /
    • 2011
  • A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of "hot site" for surface-enhanced Raman scattering (SERS). The characteristics of a typical nanogap formed by a planar Au and either an Au and Ag nanoparticle have been well studied using 4-aminobenzenethiol (4-ABT) as a probe. 4-ABT is, however, an unusual molecule in the sense that its SERS spectral feature is dependent not only on the kinds of SERS substrates but also on the measurement conditions; thus further characterization is required using other adsorbate molecules such as 1,4-phenylenediisocyanide (1,4-PDI). In fact, no Raman signal was observable when 1,4-PDI was selfassembled on a flat Au substrate, but a distinct spectrum was obtained when 60 nm-sized Au or Ag nanoparticles were adsorbed on the pendent -NC groups of 1,4-PDI. This is definitely due to the electromagnetic coupling between the localized surface plasmon of Au or Ag nanoparticle with the surface plasmon polariton of the planar Au substrate, allowing an intense electric field to be induced in the gap between them. A higher Raman signal was observed when Ag nanoparticles were attached to 1,4-PDI, irrespective of the excitation wavelength, and especially the highest Raman signal was measured at the 632.8 nm excitation (with the enhancement factor on the order of ${\sim}10^3$), followed by the excitation at 568 and 514.5 nm, in agreement with the finite-difference timedomain calculation. From a separate potential-dependent SERS study, the voltage applied to the planar Au appeared to be transmitted without loss to the Au or Ag nanoparticles, and from the study of the effect of volatile organics, the voltage transmission from Au or Ag nanoparticles to the planar Au also appeared as equally probable to that from the planar Au to the Au or Ag nanoparticles in a nanogap electrode. The response of the Au-Ag nanogap to the external stimuli was, however, not the same as that of the Au-Au nanogap.

Effectiveness of gold nanoparticle-coated silica in the removal of inorganic mercury in aqueous systems: Equilibrium and kinetic studies

  • Solis, Kurt Louis;Nam, Go-Un;Hong, Yongseok
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.99-107
    • /
    • 2016
  • The adsorption of inorganic mercury, Hg (II), in aqueous solution has been investigated to evaluate the effectiveness of synthesized gold (Au) nanoparticle-coated silica as sorbent in comparison with activated carbon and Au-coated sand. The synthesis of the Au-coated silica was confirmed by x-ray diffraction (Bragg reflections at $38.2^{\circ}$, $44.4^{\circ}$, $64.6^{\circ}$, and $77.5^{\circ}$) and the Au loading on silica surface was $6.91{\pm}1.14mg/g$. The synthesized Au-coated silica performed an average Hg adsorption efficiency of ~96 (${\pm}2.61$) % with KD value of 9.96 (${\pm}0.32$) L/g. The adsorption kinetics of Hg(II) on to Au-coated silica closely follows a pseudo-second order reaction where it is found out to have an initial adsorption rate of $4.73g/{\mu}g/min/$ and overall rate constant of $4.73{\times}10^{-4}g/{\mu}g/min/$. Au-coated silica particles are effective in removing Hg (II) in aqueous solutions due to their relatively high KD values, rapid adsorption rate, and high overall efficiency that can even decrease mercury levels below the recommended concentrations in drinking water.

Au/Titania Composite Nanoparticle Arrays with Controlled Size and Spacing by Organic-Inorganic Nanohybridization in Thin Film Block Copolymer Templates

  • Li, Xue;Fu, Jun;Steinhart, Martin;Kim, Dong-Ha;Knoll, Wolfgang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.1015-1020
    • /
    • 2007
  • A simple approach to prepare arrays of Au/TiO2 composite nanoparticles by using Au-loaded block copolymers as templates combined with a sol-gel process is described. The organic-inorganic hybrid films with closely packed inorganic nanodomains in organic matrix are produced by spin coating the mixtures of polystyrene-block-poly(ethylene oxide) (PS-b-PEO)/HAuCl4 solution and sol-gel precursor solution. After removal of the organic matrix with deep UV irradiation, arrays of Au/TiO2 composite nanoparticles with different compositions or particle sizes can be easily produced. Different photoluminescence (PL) emission spectra from an organic-inorganic hybrid film and arrays of Au/TiO2 composite nanoparticles indicate that TiO2 and Au components exist as separate state in the initial hybrid film and form composite nanoparticles after the removal of the block copolymer matrix.

Enhancement of Efficiency for Polymerase Chain Reaction Using Nanoparticle-Coated Graphene Oxide

  • Ju, Min-Yeong;Baek, Seung-Hun;Kim, Eun-Ju;Nguyen, Nguyen Le Thao;Park, Chan-Yeong;Park, Tae-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.375.1-375.1
    • /
    • 2016
  • Polymerase chain reaction (PCR) has revolutionized genetics and become one of the most popular techniques in modern biological and medical sciences. It can be used not only as an in vitro DNA amplification method but also used in many bioassay applications. The PCR can be used to exponentially produce a large number of DNA copies from a small quantity of DNA molecules in a few hours. However, as unwanted DNA fragments are also often manufactured, the amplification efficiency of PCR is decreased. To overcome this limitation, several nanomaterials have been employed to increase the specificity of the PCR reaction. Recently, graphene has attracted a great interest for its excellent electron transfer, thermal and biocompatibility. Especially, gold nanoparticle-coated graphene oxide (GO/AuNPs) led to enhance electron and thermal transfer rate and low-charge transfer resistance. Therefore, we report the development of a demonstration for the PCR efficiency using a large-scale production of the GO and combination of gold nanoparticles. Because a thermal conductivity is an important factor for improving the PCR efficiency in different DNA polymerases and different size samples. When PCR use GO/AuNPs, the result of transmission electron microscopy and real-time quantitative PCR (qPCR) showed an enhanced PCR efficiency. We have demonstrated that GO/AuNPs would be simply outperformed for enhancing the specificity and efficiency of DNA amplification procedure.

  • PDF

Nanoscale Floating-Gate Characteristics of Colloidal Au Nanoparticles Electrostatically Assembled on Si Nanowire Split-Gate Transistors

  • Jeon, Hyeong-Seok;Park, Bong-Hyun;Cho, Chi-Won;Lim, Chae-Hyun;Ju, Heong-Kyu;Kim, Hyun-Suk;Kim, Sang-Sig;Lee, Seung-Beck
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.101-105
    • /
    • 2006
  • Nanoscale floating-gate characteristic of colloidal Au nanoparticles electrostatically assembled on the oxidized surface of Si nanowires have been investigated. The Si nanowire split-gate transistor structure was fabricated by electron beam lithography and subsequent reactive ion etching. Colloidal Au nanoparticles with ${\sim}5$ nm diameters were selectively deposited onto the Si nanowire surface by 2 min electrophoresis. It was found that electric fields applied to the self-aligned split side gates allowed charge to be transferred on the Au nanoparticles. It was observed that the depletion mode cutoff voltage, induced by the self-aligned side gates, was shifted by more than 1 V after Au nanoparticle electrophoresis. This may be due to the semi-one dimensional nature of the narrow Si nanowire transport channel, having much enhanced sensitivity to charges on the surface.

Photodegradation of Safranin-O Dye by Au Metal Colloid in Cosmetics (화장품에서 금 콜로이드 입자에 의한 사프라닌 염료의 분해 연구)

  • Han, Moon-Suk;Lee, Yong-Geun;Lee, Young-Ho;Kim, Dae-Wook;Oh, Seong-Geun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.2
    • /
    • pp.75-82
    • /
    • 2008
  • In this study, the photocatalysed degradation of safranin-O was investigated using Au colloids. Au metal nanoparticle wasused to eliminate safranin-O fast in solution. Au nanoparticles were prepared reduction method using $Na_2CO_3$ and PVP in aqueous solution. The degradation of safranin-O was examined using a variety of condition such as concentration of Au colloid or Au salt, reaction pH, and reaction time in the presence of UV light and $H_2O_2$. As the concentration of Au colloid increases, the rate of dye degradation increases. The photo-oxidation of the safranin-O was monitored spectrophotometrically. The properties of Au nanoparticles were characterized by UV-Vis spectroscopy. In addition, catalytic capacities of Au nanoparticles were also determined by UV-Vis spectroscopy.

Improved Antireflection Property of Si by Au Nanoparticle-Assisted Electrochemical Etching (금 나노입자 촉매를 이용한 단결정 실리콘의 전기화학적 식각을 통한 무반사 특성 개선)

  • Ko, Yeong-Hwan;Joo, Dong-Hyuk;Yu, Jae-Su
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • We fabricated the textured silicon (Si) surface on Si substrates by the electrochemical etching using gold (Au) nanoparticle catalysts. The antireflective property of the fabricated Si nanostructures was improved. The Au nanoparticles of ~20-150 nm were formed by the rapid thermal annealing using thermally evaporated Au films on Si. In the chemical etching, the aqueous solution containing $H_2O_2$ and HF was used. In order to investigate the effect of electrochemical etching on the etching depth and reflectance characteristics, the sample was immersed in the aqueous etching solution for 1 min with and without applied cathodic voltages of -1 V and -2 V. As a result, the solar weighted reflectance, i.e., the averaged reflectance with considering solar spectrum (air mass 1.5), could be efficiently reduced for the electrochemically etched Si by applying the cathodic voltage of -2 V, which is expected to be useful for Si solar cell applications.

Induction of DNA Damage in L5178Y Cells Treated with Gold Nanoparticle

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Song, Hyun-A;Jeong, Jin-Young;Lim, Yong-Taik;Chung, Bong-Hyun;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.92-97
    • /
    • 2009
  • As nanomaterials might enter into cells and have high reactivity with intracellular structures, it is necessary to assay possible genotoxic risk of them. One of these approaches, we investigated possible genotoxic potential of gold nanoparticle (AuNP) using L5178Y cells. Four different sizes of AuNP (4, 15, 100 or 200 nm) were synthesized and the sizes and structures of AuNP were analyzed using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and stability was analyzed by a UV/Vis. Spectrophotometer. Cytotoxicity was assessed by direct cell counting, and cellular location was detected by dark field microscope at 6, 24 and 48 h after treatment of AuNP. Comet assay was conducted to examine DNA damage and tumor necrosis factor (TNF)-${\alpha}$ mRNA level was assay by real-time reverse transcription polymerase chain reaction. Synthetic AuNP (4, 50, 100 and 200 nm size) had constant characteristics and stability confirmed by TEM, SEM and spectrophotometer for 10 days, respectively. Dark field microscope revealed the location of AuNP in the cytoplasm at 6, 24 and 48 h. Treatment of 4 nm AuNP induced dose and time dependent cytotoxicity, while other sizes of AuNP did not. However, Comet assay represented that treatment of 100 nm and 200 nm AuNP significantly increased DNA damage compared to vehicle control (p <0.01). Treatment of 100 nm and 200 nm AuNP significantly increased TNF-${\alpha}$ mRNA expression compared to vehicle control (p<0.05, p<0.01, respectively). Taken together, AuNP induced DNA damage in L5178Y cell, associated with induction of oxidative stress.