• Title/Summary/Keyword: Au-Cu alloy

Search Result 60, Processing Time 0.026 seconds

A Study of Metal Technology in Ancient Silla Dynasity (고대신라의 금속기술 연구)

  • 강성군;조종수
    • Journal of Surface Science and Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1975
  • The crorosion film of gilt bronz, silver and iron objects, which were excaved from Ancient Tomb of Silla Dynasty, was removed by the electrolytic reduction process. These metallic objects were mainly investigated for microstructure, designs and gilting film etc. Most iron objects might be made by hot forging process. The cold extrusion technique might be used for gold and silver objects, in addition to an amalgam method might be applied for the gilting Au film on Cu-alloy surface. For the gilting on glass surface, first, a Cu alloy was cladded on glass , next, Au-film was obtained on the Cu-ally by the amagum method.

  • PDF

Phase transformation and grain boundary precipitation related to the age-hardening of an Au-Ag-Cu-Pt-Zn alloy for crown and bridge fabrication (관교의치용 Au-Ag-Cu-Pt-Zn 합금의 시효경화성과 관련된 상변태와 입계석출)

  • Cho, Mi-Hyang
    • Journal of Technologic Dentistry
    • /
    • v.34 no.4
    • /
    • pp.345-352
    • /
    • 2012
  • Purpose: The age-hardening mechanism of an Au-Ag-Cu-Pt-Zn alloy for crown and bridge fabrication was investigated by means of hardness test, X-ray diffraction study and field emission scanning electron microscopic observation. Methods: Before hardness testing, the specimens were solution treated and then were rapidly quenched into ice brine, and were subsequently aged isothermally at $400-450^{\circ}C$ for various periods of time in a molten salt bath and then quenched into ice brain. Hardness measurements were made using a Vickers microhardness tester. The specimens were examined at 15 kV using a field emission scanning electron microscope. Results: By the isothermal aging of the solution-treated specimen at $450^{\circ}C$, the hardness increased rapidly in the early stage of aging process and reached a maximum hardness value. After that, the hardness decreased slowly with prolonged aging. However, the relatively high hardness value was obtained even with 20,000 min aging. By aging the solution-treated specimen, the f.c.c. Au-Ag-rich ${\alpha}_0$ phase was transformed into the Au-Ag-rich ${\alpha}_1$ phase and the AuCu I ordered phase. Conclusion: The hardness increase in the early stage of aging process was attributed to the formation of lattice strains by the precipitation of the Cu-rich phase and then subsequent ordering into the AuCu I-type phase. The decrease in hardness in the later stage of aging process was due to the release of coherency strains by the coarsening of tweed structure in the grain interior and by the growth and coarsening of the lamellar structure in the grain boundary. The increase of inter-lamellar space contributed slightly to the softening compared to the growth of lamellar structure toward the grain interior.

The Effect of Au Addition on the Hardening Mechanism in Ag-25wt% Pd-15wt% Cu (Ag-25wt% Pd-15wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效京華特性))

  • Bea, B.J.;Lee, H.S.;Lee, K.D.
    • Journal of Technologic Dentistry
    • /
    • v.20 no.1
    • /
    • pp.37-49
    • /
    • 1998
  • The specimens used were Ag-25 Pd-15 Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electric furnace and centrifugal casting machine in Ar atmosphere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at $350{\sim}550^{\circ}C$ Age- hardening characteristics of the small Au-containing Ag-Pd-Cu dental alloys were investigated by means of hardness testing. X-ray diffraction and electron microscope observations, electrical resistance, ergy dispersed spectra and electron probe microanalysis. Principal results are as follows : Hardening occured in two stages, i.e., stage I in low temperature and stage II in high temperature regions, during continuous aging. The case of hardening in stage I was due to the formation of the $L1_0$ type face-centered tetragonal PdCu-ordered phase in the grain interior and hardening in stage I was affected by the Cu concentration. In stage II, decomposition of the ${\alpha}$ solid solution to a PdCu ordered phase($L1_0$ type) and an Ag-rich ${\alpha}2$ phase occurred and a discontinuous precipitation occurred at the grain boundary. From the electron microscope study, it was conclued that the cause of age-hardening in this alloy is the precipitation of the PdCu ordered phase, which has AuCu I type face-centered tetragonal structure. Precipetation procedure was ${\alpha}{\to}{\alpha}+{\alpha}_2+PdCu {\to}{\alpha}_1+{\alpha}_2+PdCu$ at Pd/Cu = 1.7 Ag-Pd-Cu alloy is more effective dental alloy as ageing treatment and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

Effects of a Au-Cu Back Layer on the Properties of Spin Valves

  • In, Jang-Sik;Kim, Sang-Hoon;Kang, Jae-Yong;Tiwari, Ajay;Hong, Jong-Ill
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.118-123
    • /
    • 2007
  • We have studied the effect of Au-Cu back layer system ${\sim}10{\AA}$ thick on the properties of a spin valve. The back layers were Cu, Au, co-sputtered $Cu_xAu_{1-x}$, laminated $[Au/Cu]_n$. and bi-layer [Au/Cu]. When Au was added to the Cu, the resistance of the spin valve abruptly increased most likely due to impurity scattering. The GMR values were not increased significantly for all the structures. In the case of co-sputtered $Cu_xAu_{1-x}$, the changes in the resistance, ${\Delta}R$, was increased at a composition of ${\sim}Au_{0.5}Cu_{0.5}$. This increase in ${\Delta}R$ is due to increase in the resistance and not from the enhanced spin-dependent scattering. The structural analyses showed that the orthorhombic $Au_{0.5}Cu_{0.5}$ was formed in the back layer instead of the face-centered tetragonal $Au_{0.5}Cu_{0.5}$ as we expected. Thermal annealing over $400^{\circ}C$ may be required to have face-centered tetragonal in the $10{\AA}$ thick ultra-thin film. In the case of a laminated or bi-layered back layer, the properties of the spin valve were improved, which may be attributed to the increase in the mean free path of conduction electrons.

Comparison of the Characteristics of Cu-Sn and Ni Pre-Plated Frames Prepared by Electro-Plating (전기도금된 Cu-Sn과 Ni preplated frame의 특성 비교)

  • Lee, D.H.;Jang, T.S.;Hong, S.S.;Lee, J.W.;Yang, H.W.;Hahn, B.K.
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.6
    • /
    • pp.276-281
    • /
    • 2006
  • In order to improve the performance of PPFs (Pre-Plated Frames), a PPF that employed a Cu-Sn alloy instead of conventionally used Ni was developed and then its properties were investigated. It was found that the electoplated Cu-Sn alloy layer was a mixture of uniformly distributed fine crystallites, resulting In better wettability and crack resistance than those of Ni PPF. Moreover, as in Cu/Ni/Pd/Au PPF, migration of copper atoms from the base metal to the top of the Cu/Cu-Sn/Pd/Au PPF surface was not found although the Cu-Sn layer itself contained considerable amount of copper. It was expected that, by using the newly developed Cu-Sn PPF, any possible heat generation and signal interrupt caused by an external electro-magnetic field could be reduced because the Cu-Sn layer was paramagnetic, i.e., nonmagnetic.

Study of order-disorder transition in Pt-Ni bimetallic alloys

  • Seo, Ok-Gyun;Hwang, Jae-Seong;O, Pil-Geon;Gang, Hyeon-Cheol;Jeong, Hui-Su;Kim, -Chan;Kim, Dae-Gyun;Kim, Yun-Hui;Lee, Su-Ung;Kim, Gi-Ho;Jeong, Geon-Yeong;No, Do-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.403-403
    • /
    • 2010
  • The Pt-Ni alloy is an electro-catalyst of interest in the low temperature direct methanol fuel cells(DMFCs). It has been already reported that the Pt-Ni alloy catalysts may even have enhanced activity compared to pure platinum catalyst, depending on how the surfaces are prepared. The order-disorder transition in bimetallic alloy such as $\beta$-CuZn, Cu3Au, and CuAu have been investigated greatly by x-ray diffraction. After annealing the bimetallic alloy, the crystal structure changes as observed in the order-disorder transition of Cu3Au which changes from the face centered cubic to a simple cubic structure. Pt-Ni bimetallic alloy has been already reported to have the face centered cubic structure. However, in nano-scale Pt-Ni bimetallic alloy crystals the crystal structures changes to a simple cubic structure. In this experiment, we have studied the order-disorder transition in Pt-Ni bimetallic nanocrystals. Pt/Ni thin films were deposited on sapphire(0001) substrates by e-beam evaporator and then Pt-Ni alloy were formed by RTA at 500, 600, and $700^{\circ}C$ in a vacuum environment and Pt-Ni nano particles were formed by RTA at $1059^{\circ}C$ in a vacuum environment. We measured the structure of Pt-Ni bimetallic alloy films using synchrotron x-ray diffraction and SEM.

  • PDF

Isothermal Age-hardening Behavior in the Commercial Dental Au-Ag-Cu-Pd Alloy (시판 치과용 Au-Ag-Cu-Pd 합금의 등온시효경화거동)

  • Kim, Hyung-Il;Jang, Myoung-Ik;Lee, You-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.247-254
    • /
    • 1996
  • The relationship between the isothermal age-hardening behavior and the phase transformation in the commercial dental Au-Ag-Cu-Pd alloy was investigated Age-hardening was mostly attributed to the lattice distortions of the supersaturated w phase resulting from the transformation to the metastable phasel which were more distinct at lower aging temperature. The lattice distortions resulting from the transformation of the metastable phases to the equilibrium phases also made a contribution to the age-hardening.

  • PDF

Corrosion of Dental Au-Ag-Cu-Pd Alloys in 0.9 % Sodium Chloride Solution

  • Chiba, Atsushi;Kusayanagi, Yukiharu
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.19-22
    • /
    • 2005
  • Two Au-Ag-Cu-Pd dental casting alloys (Au:12% and 20%) used. The test solutions used 0.9 % NaCl solution (isotonic sodium chloride solution), 0.9 % NaCl solution containing 1 % lactic acid, and 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol $dm^{-3}$ $Na_2S$. The surface of two samples in three sample solutions was not natural discoloration during one year. The alloy containing 12 % gold was easily alloyed and the composition was uniform comparing with the alloy containing 20 % gold. The rest potentials have not a little effect after three months. The kinds of metals could not definitely from the oxidation and reduction waves of metal on the cyclic voltammograms. The dissolutions of gold and palladium were 12 % Au sample in the 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol $dm^{-3}$ $Na_{2}S$. The pH of solution had an affect on dissolution of copper, and sulfur ion had an affect on dissolution of silver. The copper dissolved amount from 20 % gold sample was about 26 times comparing with that of 12 % gold sample in the 0.9 % solution containing 1 % lactic acid. Corrosion products were silver chloride and copper chloride in NaCl solution, and silver sulfide and copper sulfide in NaCl solution containing $Na_{2}S$.

Quantitative Surface Analysis of Co-Ni and Au-Cu alloys by XPS and SIMS (XPS와 SIMS에 의한 Co-Ni과 Au-Cu 합금표면 정량분석 연구)

  • 김경중;문대원;이광우
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.106-114
    • /
    • 1992
  • Abstract-Quantitative surface analysis of Co-Ni and Au-Cu alloys by XPS and SIMS was studied. For Co-Ni alloy, quantitative XPS analysis could be done within 1-2% relative error with pure element standards without any correction. For Au-Cu, quantitative XPS analysis was not possible without any correction. But it could be done with standard alloys of various composition within 1-2% relative error. Without standard alloys, Au-Cu alloys could be analyzed by XPS within 10% relative error with pure element standards. For SIMS analysis of Co-Ni alloys, the relative secondary ion yields of Co+/Nit has linear relation with ratio of each composition so that quantitative SIMS analysis was possible for Co-Ni alloys. Preliminary results of XPS round robin test of VAMAS-SCA Japan Project are given.

  • PDF

Metallurgical Reaction Properties between In-15Pb-5Ag Solder and Zu-Ni Surface Finish (In-l5Pb-5Ag 솔더와 Au/Ni 층과의 반응 특성)

  • 이종현;엄용성;최광성;최병석;윤호경;박흥우;문종태
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • With the contact pad consisted of $0.5{\mu}{\textrm}{m}$ $Au/5{\mu}{\textrm}{m}$ Ni/Cu layers on a conventional ball grid array(BGA) substrate, metallurgical reaction properties between the pad and In-15(wt.%)Pb-5Ag solder alloy were studied after reflow and solid aging. In as-reflow condition, thin AuIn$_2$or Ni$_{28}$In$_{72}$ intermetallic layer was formed at the solder/pad interface according to reflow time. Dissolution of the Au layer into the molten solder was remarkably limited in comparison with eutectic Sn-37Pb alloy. After solid aging of 300 hrs, thickness of In-Ni layer increased to about $2{\mu}{\textrm}{m}$ in the both as-reflow case. It was observed that In atoms diffuse through the AuIn$_2$phase to react with underlaying Ni layer. The metallurgical reaction properties between In-l5Pb-7Ag alloy and Au/Ni surface finish were analysed to result in suppression of Au-embrittlement in the solder joints.

  • PDF