• Title/Summary/Keyword: Au(111)

Search Result 130, Processing Time 0.029 seconds

Self-Assembled Monolayers of Dioctyl Diselenides on Au(111)

  • Choi, Jung-Seok;Lee, Yoon-Jung;Kang, Hun-Gu;Han, Jin-Wook;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1229-1232
    • /
    • 2008
  • The surface structure, electrochemical behavior, and wetting property of self-assembled monolayers (SAMs) formed by dioctyl diselenide (DODSe) on Au(111) were investigated by scanning tunneling microscopy (STM), cyclic voltammetry (CV), and contact angle measurements. In contrast to the formation of well-ordered SAMs by octanethiol on Au(111), the SAMs formed by DODSe have a disordered phase and many unusual vacancy islands (VIs). In addition, the formation of DODSe SAMs is largely influenced by the solution concentration used. DODSe SAMs formed in 5 $\mu$ M and 50 $\mu$ M solutions have two mixed domains consisting of missing-row ordered phases and disordered phases, while DODSe SAMs formed in 1 mM and 5 mM solutions have only disordered phases with an abnormally high VI fraction of 22-24%. We also found that the wetting property and electrochemical behavior of DODSe SAMs on Au(111) are markedly influenced by the formation of ordered SAMs and the density of VIs.

A Study on the Current-voltage Properties of Dipyridinium Molecule using Scanning Tunneling Microscopy (STM에 의한 Dipyridinium 유기분자의 전압-전류 특성 연구)

  • Lee, Nam-Suk;Shin, Hoon-Kyu;Chang, Jeong-Soo;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.622-627
    • /
    • 2005
  • In this study, electrical properties of self-assembled dipyridinium dithioacetate molecule onto the Au(111) substrate is observed using Scanning Tunneling Microscopy(STM) by vortical structure of STM probe. At first, the Au(111) substrate is cleaned by piranha solution$(H_2SO_4:H_2O_2\;=\;3:1)$. Subsequently, 1 mM/ml of dipyridinium dithioacetate molecule is self-assembled onto the Au(111) surface. Using STM, the images of dipyridinium dithioacetate molecule which is self-assembled onto the Au(111) substrate, can be observed. In addition, the electrical properties(I-V) of dipyridinium dithioacetate can also be examined by using Scanning Tunneling Spectroscopy(STS). From the results of the measurement of the current-voltage(I-V), the property of Negative Differential Resistance(NDR) that shows the decreases of current according to the increases of voltage is observed. We found the NDR voltage of the dipyridinium dithioacetate is -1.42 V(negative region) and 1.30 V(positive region), respectively.

Formation and Structure of Self-Assembled Monolayers of Octylthioacetates on Au(111) in Catalytic Tetrabutylammonium Cyanide Solution

  • Park, Tae-Sung;Kang, Hun-Gu;Choi, In-Chang;Chung, Hoe-Il;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.441-444
    • /
    • 2009
  • The formation and structure of self-assembled monolayers (SAMs) by the adsorption of acetyl-protected octylthioacetate (OTA) on Au(111) in a catalytic tetrabutylammonium cyanide (TBACN) solution were examined by means of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Molecular-scale STM imaging revealed that OTA molecules on Au(111) in a pure solvent form disordered SAMs, whereas they form well-ordered SAMs showing a c(4 × 2) structure in a catalytic TBACN solution. XPS and CV measurements also revealed that OTA SAMs on Au(111) formed in a TBACN solution have a stronger chemisorbed peak in the S 2p region at 162 eV and a higher blocking effect compared to OTA SAMs formed in a pure solvent. In this study, we clearly demonstrate that TBACN can be used as an effective deprotecting reagent for obtaining well-ordered SAMs of thioacetyl-protected molecules on gold.

Surface Potential Change Depending on Molecular Orientation of Hexadecanethiol Self-Assembled Monolayers on Au(111)

  • Ito, Eisuke;Arai, Takayuki;Hara, Masahiko;Noh, Jaegeun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1309-1312
    • /
    • 2009
  • Surface potential and growth processes of hexadecanethiol (HDT) self-assembled monolayers (SAMs) on Au(111) surfaces were examined by Kelvin probe method and scanning tunneling microscopy. It was found that surface potential strongly depends on surface structure of HDT SAMs. The surface potential shift for the striped phase of HDT SAMs chemisorbed on Au(111) surface was +0.45 eV, which was nearly the same as that of the flat-lying hexadecane layer physisorbed on Au(111) surface. This result indicates that the interfacial dipole layer induced by adsorption of alkyl chains is a main contributor to the surface potential change. In the densely-packed HDT monolayer, further change of the surface potential was observed, suggesting that the dipole moment of the alkanethiol molecules is an origin of the surface potential change. These results indicate that the work function of a metal electrode can be modified by controlling the molecular orientation of an adsorbed molecule.

Fabrication of Au(111) substrate and tunneling current characteristics of self-assembled Viologen molecule (Au(111) 기판 제작과 자기조립된 Viologen 분자의 tunneling current 특성)

  • Lee, Nam-Suk;Choi, Won-Suk;Qian, Dong-Jin;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.255-256
    • /
    • 2006
  • The electrical properties of viologen ($VC_8SH$) were studied in terms of the tunneling current characteristics using self-assembling techniques and ultra high vacuum scanning tunneling microscopy (UHV-STM). We fabricated the Au substrate were deposited by thermal evaporation system($420^{\circ}C$). Self-assembled monolayers (SAMs) were prepared on Au(111), which had been thermally deposited onto freshly cleaved, heated mica. The Au substrate was exposed to a 1 mM/L solution of Octanethiol in ethanol for 24 h to form a monolayer. After through rinsing the sample, it was exposed to a 0.1 mM/L solution of $VC_8SH$ in ethanol for 30 min. We measurement of the morphology on the single viologen molecule. The current-voltage (I-V) properties were measured at arbitary configured points on the surface of the sample by using a STS.

  • PDF

The Effect of Suspension Stability on the Thermal Conductivity Enhancement of Water-based Au Nanofluids (물-기반 금나노유체의 분산안정성이 열전도도에 미치는 영향)

  • Choi, Tae Jong;Kim, Hyun Jin;Lee, Seung-Hyun;Park, Yong Jun;Jang, Seok Pil
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.111-115
    • /
    • 2016
  • This paper experimentally reports the effect of suspension stability on the thermal conductivity of water-based Au nanofluids. For this purpose, the water-based Au nanofluids are prepared by the one-step method called electro-chemical method with volume fraction of 0.0005%. The thermal conductivity of water-based Au nanofluids is measured from $22^{\circ}C$ to $42^{\circ}C$ using the transient hot wire method. To quantify the suspension stability of Au nanofluids, the suspension stability of nanofluids is evaluated using the in-house developed laser scattering system at a fixed wavelength of 632.8nm with the elapsed time. Based on the experimental results, the both thermal conductivity and suspension stability of water-based Au nanofluids are gradually decreased according to the time. These results experimentally show that the suspension stability of water-based Au nanofluids is the one of the important factor of thermal conductivity.

Influence of Surface Morphology and Substrate on Thermal Stability and Desorption Behavior of Octanethiol Self-Assembled Monolayers

  • Ito, Eisuke;Gang, Hun-Gu;Ito, Hiromi;Hara, Masahiko;No, Jae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.219-219
    • /
    • 2012
  • The formation and thermal desorption behaviors of octanethiol (OT) SAMs on single crystalline Au (111) and polycrystalline Au, Ag, and Cu substrates were examined by X-ray photoelectron microscopy (XPS), thermal desorption spectroscopy (TDS), and contact angle (CA) measurements. XPS and CA measurements revealed that the adsorption of octanethiol (OT) molecules on these metals led to the formation of chemisorbed self-assembled monolayers (SAMs). Three main desorption fragments for dioctyl disulfide (C8SSC8+, dimer), octanethiolate (C8S+), and octanethiol (C8SH+) were monitored using TDS to understand the effects of surface morphology and the nature of metal substrates on the thermal desorption behavior of alkanethiols. TDS measurements showed that a sharp dimer peak with a very strong intensity on single crystalline Au (111) surface was dominantly observed at 370 K, whereas a broad peak on the polycrystalline Au surface was observed at 405 K. On the other hand, desorption behaviors of octanethiolates and octanethiols were quite similar. We concluded that substrate morphology strongly affects the dimerization process of alkanethiolates on Au surfaces. We also found that desorption intensity of the dimer is in the order of Au>>Ag>Cu, suggesting that the dimerization process occurs efficiently when the sulfur-metal bond has a more covalent character (Au) rather than an ionic character (Ag and Cu).

  • PDF

Structural and optical properties of Si nanowires grown by Au-Si island-catalyzed chemical vapor deposition (Au-Si 나노점을 촉매로 성장한 Si 나노선의 구조 및 광학적 특성 연구)

  • Lee, Y.H.;Kwak, D.W.;Yang, W.C.;Cho, H.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.51-57
    • /
    • 2008
  • we have demonstrated structural evolution and optical properties of Si-nanowires (NWs) synthesized on Si (111) substrates with nanoscale Au-Si islands by rapid thermal chemical vapor deposition (RTCVD). The Au-Si nano-islands (10-50nm in diameter) were employed as a liquid-droplet catalysis to grow Si-NWs via vapor-liquid-solid mechanism. The Si-NWs were grown by a mixture gas of SiH4 and H2 at a pressure of 1.0 Torr and temperatures of $500{\sim}600^{\circ}C$. Scanning electron microscopy measurements showed that the Si-NWs are uniformly sized and vertically well-aligned along <111> direction on Si (111) surfaces. The resulting NWs are ${\sim}60nm$ in average diameter and ${\sim}5um$ in average length. High resolution transmission microscopy measurements indicated that the NWs are single crystals covered with amorphous SiOx layers of ${\sim}3nm$ thickness. In addition, the optical properties of the NWs were investigated by micro-Raman spectroscopy. The downshift and asymmetric broadening of the Si main optical phonon peak were observed in Raman spectra of Si-NWs, which indicates a minute stress effects on Raman spectra due to a slight lattice distortion led by lattice expansion of Si-NW structures.

Mixed-Island Formation and Electronic Structure of Metallo-Porphyrin Molecules on Au(111)

  • Kim, Ho-Won;Jeong, Gyeong-Hun;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.303-303
    • /
    • 2011
  • Orderings and electronic structures of organic molecules on metal substrates have been studied due to possible applications in electronic devices. In molecular systems, delocalized pi-electrons play important roles in the adsorption behaviors and electronic structures. We studied the adsorption and electronic structures of Co-Porphyrin molecules on Au(111) using scanning tunneling microscopy (STM) and spectroscopy (STS) at low temperature. Molecules form closely packed two-dimensional islands on Au(111) surface with two different types, having different shape evolutions in our energy-dependent STM observations. The Kondo resonance state, occurred by spin exchange interaction between the Co center atom and conduction electrons in the metal substrate, was observed in one type, while it was absent in the other type in scanning tunneling spectroscopy measurements. Possible origins of two molecular shapes will be discussed.

  • PDF

Determination of energetically preferable Au-S contact atomic structure in stretched single-molecule junctions

  • Ko, Kwan Ho
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.409-411
    • /
    • 2014
  • Based on the first-principles computations, the nature of the microscopic geometry of the molecule-electrode contacts was addressed. The single-molecule junction was prepared by connecting hexanediothiolate (HDT) to Au(111) electrodes via one, two, and three Au adatoms having coordination number of one (CN1), two (CN2), and, three (CN3), respectively. The contact atomic structure and energy of the stretched Au-HDT-Au junction was observed. The analysis revealed that the contact geometry with lowest coordination number (CN1) is energetically more stable than CN2 and CN3.

  • PDF