• Title/Summary/Keyword: Attitude stabilization

Search Result 71, Processing Time 0.027 seconds

An attitude control of stabilizing system using indirect adaptive fuzzy control

  • Kim, Jae-Hoon;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1318-1326
    • /
    • 2014
  • The purpose of a tracking control system is to track a moving target and to find the exact information of the target. If the platform of the tracking control system is equipped on a moving vehicle such as a ship, the tracking control system will treat even the additional platform motion. In order to avoid the complexity comprising the tracking control system, a process to treat the platform motion, named stabilizing system, must be separated from the tracking control system. In this paper, a method to comprise an attitude control system for the platform stabilization is proposed using an adaptive fuzzy control which is applicable to the system with structural and parametric uncertainty. The suggested adaptive fuzzy control algorithm is the 2nd/1st-type indirect adaptive fuzzy control algorithm using the advantages of 1st-type and 2nd-type indirect adaptive fuzzy control algorithm. Several experiments using the implemented stabilizing system are executed for verifying the effectiveness of the suggested method.

Sliding Mode Attitude Control for Momentum-Biased Spacecraft

  • Bang, Hyo-Choong;Loh, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.13-23
    • /
    • 2002
  • In this paper, we present a sliding mode control strategy for the re-orientation maneuver of rigid spacecraft containing rotating wheels. The wheels are considered as internal devices, and external inputs are employed for generation of control commands. The formulation is developed for a general case while particular example is applied to pitch bias momentum spacecraft with a single momentum wheel. The resultant control commands are used to take the gyroscopic effects into account which are caused by the rotating wheels. The controller designed demonstrates that the nutational motion of the pitch bias momentum spacecraft is effectively controlled. It is also assumed that the external control torque device is of on-off nature, and pulse width modulation technique is applied to construct proper control torque history.

Event-Triggered H2 Attitude Controller Design for 3 DOF Hover Systems (3 자유도 비행체 시스템의 이벤트 트리거 기반의 H2 자세 제어기 설계)

  • Jung, Hyein;Han, Seungyong;Lee, Sangmoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.3
    • /
    • pp.139-148
    • /
    • 2020
  • This paper is concerned with the H2 attitude controller design for 3 degree of freedom (DOF) Hover systems with an event-triggered mechanism. The 3 DOF Hover system is an embedded platform for unmanned aerial vehicle (UAV) provided by Quanser. The mathematical model of this system is obtained by a linearization around operating points and it is represented as a linear parameter-varying (LPV) model. To save communication network resources, the event-triggered mechanism (ETM) is considered and the performance of the system is guaranteed by the H2 controller. The stabilization condition is obtained by using Lyapunov-Krasovskii functionals (LKFs) and some useful lemmas. The effectiveness of the proposed method is shown by simulation and experimental results.

Backstepping-Based Control of a Strapdown Boatboard Camera Stabilizer

  • Setoodeh, Peyman;Khayatian, Alireza;Farjah, Ebrahim
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2007
  • In surveillance, monitoring, and target tracking operations, high-resolution images should be obtained even if the target is in a far distance. Frequent movements of vehicles such as boats degrade the image quality of onboard camera systems. Therefore, stabilizer mechanisms are required to stabilize the line of sight of boatboard camera systems against boat movements. This paper addresses design and implementation of a strapdown boatboard camera stabilizer. A two degree of freedom(DOF)(pan/tilt) robot performs the stabilization task. The main problem is divided into two subproblems dealing with attitude estimation and attitude control. It is assumed that exact estimate of the boat movement is available from an attitude estimation system. Estimates obtained in this way are carefully transformed to robot coordinate frame to provide desired trajectories, which should be tracked by the robot to compensate for the boat movements. Such a practical robotic system includes actuators with fast dynamics(electrical dynamics) and has more degrees of freedom than control inputs. Backstepping method is employed to deal with this problem by extending the control effectiveness.

Neural Network based Three Axis Satellite Attitude Control using only Magnetic Torquers

  • Sivaprakash, N.;Shanmugam, J.;Natarajan, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1641-1644
    • /
    • 2005
  • Magnetic actuation utilizes the mechanic torque that is the result of interaction of the current in a coil with an external magnetic field. A main obstacle is, however, that torques can only be produced perpendicular to the magnetic field. In addition, there is uncertainty in the Earth magnetic field models due to the complicated dynamic nature of the field. Also, the magnetic hardware and the spacecraft can interact, causing both to behave in undesirable ways. This actuation principle has been a topic of research since earliest satellites were launched. Earlier magnetic control has been applied for nutation damping for gravity gradient stabilized satellites, and for velocity decrease for satellites without appendages. The three axes of a micro-satellite can be stabilized by using an electromagnetic actuator which is rigidly mounted on the structure of the satellite. The actuator consists of three mutually-orthogonal air-cored coils on the skin of the satellite. The coils are excited so that the orbital frame magnetic field and body frame magnetic field coincides i.e. to make the Euler angles to zero. This can be done using a Neural Network controller trained by PD controller data and driven by the difference between the orbital and body frame magnetic fields.

  • PDF

Verification of a hybrid control approach for spacecraft attitude stabilization through hardware-in-the-loop simulation

  • Kim, Sung-Woo;Park, Sang-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.32.2-32.2
    • /
    • 2011
  • State dependent Riccati equation (SDRE) control technique has been widely used in the control society. Although it solves nonlinear optimal control problems, which minimizes state error and control efforts simultaneously, it has drawbacks when it is to be applied to the real time systems in that it requires much computational efforts. So the real time system whose computational ability is limited (for example, satellites) cannot afford to use SDRE controller. To solve this problem, a hybrid controller which is based on MSDRE (Modified SDRE) and ANFIS (Adaptive Neuro-Fuzzy Inference System) has been proposed by Abdelrahman et al. (2010). We propose a hybrid controller based on SDRE and ANFIS, and apply the hybrid controller to the hardware attitude simulator to perform a HIL (Hardware-In-the-Loop) simulation. Through HIL simulation, it is demonstrated that the hybrid controller satisfies the control requirement and the computation load is reduced significantly. In addition, the effects of statistical properties of the ANFIS training data to the performance of the ANFIS controller have been analyzed.

  • PDF

Development of the Pulsed Plasma Thruster (PPT) for Science and Technology Satellite-2 (STSAT-2)

  • Shin, G.H.;Nam, M.R.;Cha, W.H.;Lim, J.T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.352-355
    • /
    • 2005
  • This paper describes an engineering model development of a pulsed plasma thruster, which is capable of an impulse bit of 20uNs and a specific impulse of 800s. The solid fuel which is Teflon allows for a self-contained, inert and stable propellant system. And, the PPT technology makes it possible to consider a revolutionary attitude control system (ACS) concept providing stabilization and pointing accuracies previously obtainable only with reaction wheels, with reduced mass and power requirements.

  • PDF

Attitude control of space robots with a manipulator using time-state control form

  • Sampei, Mitsuji;Kiyota, Hiromitsu;Ishikawa, Masato
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.468-471
    • /
    • 1995
  • In this paper, we propose a new strategy for a space robot to control its attitude. A space robot is an example of a class of non-holonomic systems, a system of which cannot be stabilized into its equilibria with continuous static state feedbacks even in the case that the system is, in some sense, controllable. Thus, we cannot design stabilizing controllers for space robots using conventional control theories. The strategy presented here transforms the non-holonomic system into a time-state control form, and allows us to make the state of the original system any desired one. In the stabilization, any conventional control theory can be applied. For simplicity, a space robot with a two-link manipulator is considered, and a simulated motion of the controlled system is shown.

  • PDF

Application of experience-based expertise acquisition mechanism to hovering stabilization of helicopter

  • Sakai, Y.;Kitazawa, M.;Aoyama, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.384-387
    • /
    • 1995
  • A helicopter is used in a variety of situations because of its usability. Its operation, needs human skill. The authors are working on automatization of human skill. Helicopter operation is one of such fields of practicing human skill. This is why the present paper deals with helicopter (model helicopter) operation. Full operation of a helicopter needs more complicated system in both aspects of software and hardware, and also requires more training for operation. From the purpose here that helicopter operation is for checking the applicability of the authors' idea for automatization based on experience, attitude regulation in hovering is the target. In the present paper, a human operator's operation is recorded as a time series of operation actions, and the record is reorganized as the correspondence between the helicopter's attitude and the proper operation action required in that particular situation.

  • PDF

Control of the Attitude of a Wheeled Inverted Pendulum (차륜형 도립진자의 자세 제어)

  • Lee, Weon-Seob;Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.303-308
    • /
    • 1998
  • In this paper a neural network controller called "Feedback-State Learning" for control of the attitude of a wheeled inverted pendulum is presented. For the controller the design of a stable feedback controller is necessary, so the LQR is used for the feedback controller because the LQR has good performance on controlling nonlinear systems. And the neural networks are used for a feed forward controller. The designed controller is applied to the stabilization of a wheeled inverted pendulum. Because of its nonlinear characteristics such as friction and parameter variations in the linearization, the wheeled inverted pendulum is used for demonstration of the effectiveness of the proposed controller.

  • PDF