• Title/Summary/Keyword: Attitude Error

Search Result 341, Processing Time 0.028 seconds

Analysis of Initial Activation and Checkout Results of Attitude Sensor Star Trackers for a LEO Satellite (저궤도 위성의 자세센서 별 추적기 초기 운용 분석)

  • Yim, Jo Ryeong;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.87-95
    • /
    • 2012
  • This technical paper describes the analysis results of telemetry data for the initial activation of star trackers for an agile high accuracy low earth orbit satellite. The satellite was recently launched and is in the Launch and Early Operation Phases. It uses two SED36 star trackers manufactured by SODERN. The star tracker is separated by three parts, an optical head, an electronics box, and a baffle with maintaining optical head base plate temperature 20 degC in order to achieve the better performance in low frequency error. This paper presents the initial activation status, requirements and performance, anomaly occurrence, and noise equivalent angle performance analysis during the mission mode by processing the telemetry data.

A Study on Helicopter Trajectory Tracking Control using Neural Networks (신경회로망을 이용한 헬리콥터 궤적추종제어 연구)

  • Kim, Yeong Il;Lee, Sang Cheol;Kim, Byeong Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.50-57
    • /
    • 2003
  • In the paper, the design and evaluation of a helicopter trajectory tracking controller are presented. The control algorithm is implemented using the feedback linearization technique and the two time-scale separation architecture. In addition, and on-line adaptive architecture that employs a neural network compensating the model inversion error caused by the deficiency of full knowledge of helicopter dynamic is applied to augment the attitude control system. Trajectory tracking performance of the control system in evaluated using modified TMAN simulation program representing as Apache helicopter. It is show that the on-line neural network in an adaptive control architecture is very effective in dealing with the performance depreciation problem of the trajectory tracking control caused by insufficient information of dynamics.

Vibration Adaptive Algorithm for Vision Systems (비전 시스템의 성능개선을 위한 진동 적응 방법)

  • Seo, Kap-Ho;Yun, Sung-Jo;Park, Jeong Woo;Park, Sungho;Kim, Dae-Hee;Sohn, Dong-Seop;Suh, Jin-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.486-491
    • /
    • 2016
  • Disturbance/vibration reduction is critical in many applications using machine vision. The off-focusing or blurring error caused by vibration degrades the machine performance. In line with this, real-time disturbance estimation and avoidance are proposed in this study instead of going with a more familiar approach, such as the vibration absorber. The instantaneous motion caused by the disturbance is sensed by an attitude heading reference system module. A periodic vibration modeling is conducted to provide a better performance. The algorithm for vibration avoidance is described according to the vibration modeling. The vibration occurrence function is also proposed, and its parameters are determined using the genetic algorithm. The proposed algorithm is experimentally tested for its effectiveness in the vision inspection system.

Error Correction of Interested Points Tracking for Improving Registration Accuracy of Aerial Image Sequences (항공연속영상 등록 정확도 향상을 위한 특징점추적 오류검정)

  • Sukhee, Ochirbat;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.93-97
    • /
    • 2010
  • This paper presents the improved KLT(Kanade-Lucas-Tomasi) of registration of Image sequence captured by camera mounted on unmanned helicopter assuming without camera attitude information. It consists of following procedures for the proposed image registration. The initial interested points are detected by characteristic curve matching via dynamic programming which has been used for detecting and tracking corner points thorough image sequence. Outliers of tracked points are then removed by using Random Sample And Consensus(RANSAC) robust estimation and all remained corner points are classified as inliers by homography algorithm. The rectified images are then resampled by bilinear interpolation. Experiment shows that our method can make the suitable registration of image sequence with large motion.

RF Seeker Measurement modeling using ISAR Image (ISAR 영상을 이용한 RF탐색기 측정치 모델링)

  • Ha, Hyun-Jong;Park, Woosung;Jung, Ki-Hwan;Park, Sang-Sup;Koh, Il-Suek;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.40-48
    • /
    • 2015
  • In this paper, we suggest a measurement modeling of the RF seeker using the ISAR(Inverse Synthetic Aperture Radar) image. Reference scattering points are extracted first from ISAR images which are changed according to target attitude. And then uncertainties included in RF seeker measurement such as noise strength, blink, and boresight error are added to the reference scattering points. The proposed measurement model of the RF seeker can be used to develop various kinds of target tracking algorithms.

Correlation between Driver's Unsafe Acts and Personality Types (운전자의 불안전한 행위와 성격유형과의 상호관계에 관한 연구)

  • Park, Kyung-Soo;Hwang, Sang-Hyuck;Lee, Jane
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.137-144
    • /
    • 2006
  • The goal of this study is to find out correlation between Driver's Unsafe acts(errors and violations) and Personality types. The experiment was performed on 180 subjects, men and women between 20's and 60's having experience in driving for 6 months at least. Personality types of the subjects were classified by MBTI(Myers-Briggs Type Indicator) GS type and Driver's unsafe acts were measured by KDBQ(Korean Driver Behavior Questionnaire) based on Reason's DBQ(Driver Behavior Questionnaire). The result of experiment showed several facts about the relation. The first is that the drivers of P (Perceiving) type commit more violations and slips than drivers of J(Judging) type. The second is that in the comparison among attitude indexes(EP, EJ, IP, IJ) the drivers of EP(Extroversions - Perceiving) commit more violations than other type drivers. Finally, only men of P(Perceiving) type commits more violations than men of J(Judging). Based on these facts, it is possible to use Personality types as a device to prevent unsafe acts in various fields for driver selection and accident prevention training classified by Personality types etc.

A Real-time and Off-line Localization Algorithm for an Inpipe Robot by Detecting Elbows (엘보 인식에 의한 배관로봇의 실시간 위치 추정 및 후처리 위치 측정 알고리즘)

  • Lee, Chae Hyeuk;Kim, Gwang Ho;Kim, Jae Jun;Kim, Byung Soo;Lee, Soon Geul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1044-1050
    • /
    • 2014
  • Robots used for pipe inspection have been studied for a long time and many mobile mechanisms have been proposed to achieve inspection tasks within pipelines. Localization is an important factor for an inpipe robot to perform successful autonomous operation. However, sensors such as GPS and beacons cannot be used because of the unique characteristics of inpipe conditions. In this paper, an inpipe localization algorithm based on elbow detection is presented. By processing the projected marker images of laser pointers and the attitude and heading data from an IMU, the odometer module of the robot determines whether the robot is within a straight pipe or an elbow and minimizes the integration error in the orientation. In addition, an off-line positioning algorithm has been performed with forward and backward estimation and Procrustes analysis. The experimental environment has consisted of several straight pipes and elbows, and a map of the pipeline has been constructed as the result.

Kinematic and Image Stabilization of a Two-axis Surveillance System on Ship (선상 2축 감시장비의 기구 및 영상 안정화)

  • Lee, Kyung-Min;Cho, Jae-Hyun;Kim, Ho-Bum;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.55-60
    • /
    • 2012
  • When operating a surveillance system in the maritime environment, its stabilization performance is degraded due to undesirable disturbance motions. For accurate target pointing of a 2-axes surveillance system on shipboard, the kinematic stabilization is first applied, which compensates a deviated motion via coordinate transformations of attitude information. Resultantly, the stabilization error is no longer reduced due to less accuracy of a MEMS sensor and kinematic constraint, leading to introduction of the image stabilization as a complementary function. And for real-time execution of the present dual stabilization scheme, a HILS (Hardware In the Loop Simulation) test bed including 6-dof motion simulator has been constructed, and through the obtained HILS data, it has been confirmed that the stabilization is successfully.

DEVELOPMENT OF MAGNETOMETER DIGITAL CIRCUIT FOR KSR-3 ROCKET AND ANALYTICAL STUDY ON CALIBRATION RESULT (KSR-3 과학 로켓용 자력계 디지털 회로 개발 및 검교정시험 결과 분석 연구)

  • 이은석;장민환;황승현;손대락;이동훈;김선미;이선민
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.293-304
    • /
    • 2002
  • This paper describes the re-design and the calibration results of the MAG digital circuit onboard the KSR-3. We enhanced the sampling rate of magnetometer data. Also, we reduced noise and increased authoritativeness of data. We could confirm that AIM resolution was decreased less than InT of analog calibration by a digital calibration of magnetometer. Therefore, we used numerical-program to correct this problem. As a result, we could calculate correction and error of data. These corrections will be applied to magnetometer data after the launch of KSR-3.

Reduced Order Luenberger State Observer Design for Lateral Direction Approach Control of Aircraft (항공기의 횡방향 접근 제어를 위한 축소차수 상태관측기 설계)

  • Lee, Byung-Seok;Heo, Moon-Beom;Nam, Gi-Wook;Park, Hyeong-Taek
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.2
    • /
    • pp.18-25
    • /
    • 2012
  • The availability of the GPS signal has been expanded greatly in the field of society overall through the development and construction of the GNSS(Global Navigation Satellite System). Furthermore, in the military, aviation and field of space, the GPS signal is applied widely through the combination of INS consisting of gyroscope and accelerometer, IMU, AHRS with the addition of magnetic sensor. Particularly, the performance of these equipments or sensors is very important with GPS and PAR(Precision Approach Radar) in the flight control of the aircraft. This paper deals with MATLAB simulation and ROLSO(Reduced Order Luenberger State Observer) design to reduce the load of system and realize the stable lateral direction approach control in an appropriate time for reduction of the horizontal error which is importantly considered while an aircraft lands instead of the FOLSO(Full Order Luenberger State Observer) using all measurement values. Consequently, ROLSO is expected to be used for the aircraft's attitude control in the aircraft landing causing the burden to the pilots.