• 제목/요약/키워드: Attitude Determination

검색결과 210건 처리시간 0.035초

인공위성 자세결정 시스템을 위한 등가 오차모델 (Equivalent Error Model for Spacecraft Attitude Determination System)

  • 조윤철;유명종
    • 제어로봇시스템학회논문지
    • /
    • 제9권10호
    • /
    • pp.852-860
    • /
    • 2003
  • We introduce the error models for an attitude determination system(ADS) with gyroscopes and stellar sensor. The ADS error models are derived according to the definition of the reference frame and of the attitude error. The equivalent error models applicable to the attitude determination system with large attitude errors are presented. The simulation results show that the proposed error models improve performance of the attitude determination system.

Covariance Analysis Study for KOMPSAT Attitude Determination System

  • Rhee, Seung-Wu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권1호
    • /
    • pp.70-80
    • /
    • 2000
  • The attitude knowledge error model is formulated for specifically KOMPSAT attitude determination system using the Lefferts/Markley/Shuster method, and the attitude determination(AD) error analysis is performed so as to investgate the on-board attitude determination capability of KOrea Multi-Purpose SATellite(KOMPSAT) using the covariance analysis method. Analysis results show there is almost no initial value effect on Attitude Determination (AD) error and the sensor noise effects on AD error are drastically decreased as is predicted because of the inherent characteristic of Kalman filter structure. However, it shows that the earth radiance effect of IR-sensor(earth sensor) and the bias effects of both IR-sensor and fine sun sensor are the dominant factors degrading AD error and gyro rate bias estimate error in AD system. Analysis results show that the attitude determination errors of roll, pitch and yaw axes are 0.056, 0.092 and 0.093 degrees, respectively. These numbers are smaller than the required values for the normal mission of KOMPSAT. Also, the selected on-orbit data of KOMPSAT is presented to demonstrate the designed AD system.

  • PDF

저가형 수신기를 이용한 실시간 GNSS 자세결정 시스템 설계 및 성능 평가 (Design and Evaluation of Real-time GNSS Attitude Determination Systems using Low Cost Receivers)

  • 채정근;이동선;강인숙;박찬식
    • 전기학회논문지
    • /
    • 제63권9호
    • /
    • pp.1259-1265
    • /
    • 2014
  • In this paper, the real-time attitude determination based Matlab using low-cost receivers was designed and evaluated. The GNSS attitude determination system was implemented to operation in real-time by TimerCallback in MATLAB. The TTM(Transmission Time Misalignment) of U-blox receiver was confirmed through zero baseline tests and this problem was revised. The computed attitude by the high-cost NovAtel receiver was compared to the computed attitude by the low-cost U-blox receiver. As a result of this, the performance of attitude determination systems by low-cost receiver was confirmed. To determine baseline, LAMBDA and BC-LAMBDA for integer ambiguities search methods were used. To confirm suitable integer ambiguity search method in real-time attitude determination algorithm, determined baselines by two methods were compared, and it was confirmed that BC-LAMBDA is more suitable. As a result of this, the operation of real-time attitude determination system was confirmed using 3 low-cost receivers.

자장계를 이용한 인공위성의 자세결정 알고리즘 (Spacecraft Attitude Determination Algorithm Using Magnetometer)

  • 민현주;김인중;김진호;박춘배;용기력;이승우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.342-342
    • /
    • 2000
  • We present 3-axis stabilized spacecraft attitude determination algorithm using the magnetometer. The magnetometer has been used as a reliable, light-weight and inexpensive sensor in attitude determination and reaction wheel momentum dumping system. Recent studies have attempted to use the magnetometer when other attitude sensor, such as star tracker, fails. The differences between the measured and computed the Earth's magnetic field components are spacecraft attitude errors. In this paper, we propose extended Kalman filter(EKF) to determine spacecraft attitude with the magnetometer data and gyro-measured body rates. We develop and simulate this algorithm using MATLAB/SIMULINK. This algorithm can be used as a backup attitude determination system.

  • PDF

인공위성의 자세결정에 관한 연구 (A study on spacecraft attitude determination)

  • 심규성;송용규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1095-1098
    • /
    • 1996
  • In this work, attitude determination with Inertial Reference Unit as attitude sensor is considered. Usually, the attitude error from IRU increases because of gyro rate bias and noise. Therefore, other attitude sensors(sun sensor, horizon sensor, star tracker) are needed to compensate for error from IRU. In this paper, we use the extended Kalman filter for attitude estimation of spacecraft with IRU and star tracker.

  • PDF

Simulation of Spacecraft Attitude Measurement Data by Modeling Physical Characteristics of Dynamics and Sensors

  • Lee, Hun-Gu;Yoon, Jae-Cheol;Cheon, Yee-Jin;Shin, Dong-Seok;Lee, Hyun-Jae;Lee, Young-Ran;Bang, Hyo-Choong;Lee, Sang-Ryool
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1966-1971
    • /
    • 2004
  • As the remote sensing satellite technology grows, the acquisition of accurate attitude and position information of the satellite has become more and more important. Due to the data processing limitation of the on-board orbit propagator and attitude determination algorithm, it is required to develop much more accurate orbit and attitude determination, which are so called POD (precision orbit determination) and PAD (precision attitude determination) techniques. The sensor and attitude dynamics simulation takes a great part in developing a PAD algorithm for two reasons: 1. when a PAD algorithm is developed before the launch, realistic sensor data are not available, and 2. reference attitude data are necessary for the performance verification of a PAD algorithm. A realistic attitude dynamics and sensor (IRU and star tracker) outputs simulation considering their physical characteristics are presented in this paper, which is planned to be used for a PAD algorithm development, test and performance verification.

  • PDF

Precision Attitude Determination Design Using Tracker

  • Rhee, Seung-Wu;Kim, Zeen-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.53-57
    • /
    • 1998
  • Star tracker placement configuration is proposed and the properness of the placement configuration is verified for star tracker's sun avoidance angle requirement. Precision attitude determination system is successfully designed using a gyro-star tracker inertial reference system for a candidate LEO spacecraft. Elaborate kalman filter formulation for a spacecraft is proposed for covariance analysis. The covariance analysis is performed to verify the capability of the proposed attitude determination system. The analysis results show that the attitude determination error and drift rate error are good enough to satisfy the mission of a candidate spacecraft.

  • PDF

Windowed Quaternion Estimator For Gyroless Spacecraft Attitude Determination

  • Kim, Injung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.167.5-167
    • /
    • 2001
  • Single point attitude determination method provides an optimal attitude minimizing the Wahba loss function. However, for the insufficient number of measurement vectors, the conventional single point methods has no unique solution. Thus, we introduce the sequential method to and an optimal attitude minimizing the windowed loss function. In this paper, this function is de ned as the sum of square errors for all measurement vectors within the axed sliding window. For simple implementation, the proposed algorithm is rewritten as a recursive form. Moreover, the covariance matrix is derived and expressed as a recursive form. Finally, we apply this algorithm to the attitude determination system with three LOS measurement sensors.

  • PDF

CNUSAIL-1 큐브위성의 자세결정 알고리듬 설계 및 성능분석 (Attitude Determination Algorithm Design and Performance Analysis for CNUSAIL-1 Cube Satellite)

  • 김경훈;김승균;석진영;김종래
    • 한국항공우주학회지
    • /
    • 제43권7호
    • /
    • pp.609-618
    • /
    • 2015
  • CNUSAIL-1은 태양돛을 탑재한 3U 크기의 큐브위성이다. 저궤도에서 태양돛을 전개하고, 이에 따른 자세와 궤도에 대한 영향을 확인하는 임무를 수행한다. 본 논문에서는 CNUSAIL-1을 위한 자세결정 알고리즘의 구현 가능성을 제시하였다. 위성의 기준센서는 태양센서, 3축 지자기센서를 이용하며, 관성센서는 MEMS 자이로센서를 사용한다. 큐브위성용 센서는 상대적으로 저가이며, 성능 및 잡음특성이 좋지 않은 단점이 있다. 따라서 자세결정 알고리즘으로 노이즈 특성을 고려할 수 있는 확장칼만필터를 적용하였다. 또한 자세결정의 결정론적 방법인 QUEST 알고리즘과 비교하여 그 타당성을 검증하였다.

Precise attitude determination strategy for spacecraft based on information fusion of attitude sensors: Gyros/GPS/Star-sensor

  • Mao, Xinyuan;Du, Xiaojing;Fang, Hui
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.91-98
    • /
    • 2013
  • The rigorous requirements of modern spacecraft missions necessitate a precise attitude determination strategy. This paper mainly researches that, based on three space-borne attitude sensors: 3-axis rate gyros, 3-antenna GPS receiver and star-sensor. To obtain global attitude estimation after an information fusion process, a feedback-involved Federated Kalman Filter (FKF), consisting of two subsystem Kalman filters (Gyros/GPS and Gyros/Star-sensor), is established. In these filters, the state equation is implemented according to the spacecraft's kinematic attitude model, while the residual error models of GPS and star-sensor observed attitude are utilized, to establish two observation equations, respectively. Taking the sensors' different update rates into account, these two subsystem filters are conducted under a variable step size state prediction method. To improve the fault tolerant capacity of the attitude determination system, this paper designs malfunction warning factors, based on the principle of ${\chi}^2$ residual verification. Mathematical simulation indicates that the information fusion strategy overwhelms the disadvantages of each sensor, acquiring global attitude estimation with precision at a 2-arcsecs level. Although a subsystem encounters malfunction, FKF still reaches precise and stable accuracy. In this process, malfunction warning factors advice malfunctions correctly and effectively.