• Title/Summary/Keyword: Attenuation by Rainfall

Search Result 30, Processing Time 0.024 seconds

Measurement of Rainfall Characteristics and Rain-Attenuation at 38 GHz in Worst Months Affected by El Nino Signal in 1998

  • Jang Won-Gyu;Choi Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.189-192
    • /
    • 2005
  • The measurement of unique rainfall phenomenon and rain attenuation on 38 GHz terrestrial links at South Korea in 1998 is presented. It was one of the most severe rainfall years at the measured region due to increased EI Nino signal. The rainfall rate exceeded at $0.01\%$ was 97.4 mm/h during a worst month and annual rate was 63.5 mm/h. Experimentally measured results have been compared with some models and found that the rain attenuation by system level was underestimated by the existing prediction models. As it was measured only three months, further study and measurement of rainfall and rain attenuation in this region are needed for stable millimeter-wave system operation at all times.

An Analysis of Issues Related to Attenuation by Atmospheric Factors in the Frequency Bands for Radar Systems (환경 요인에 의한 레이더 주파수 대역별 감쇠 영향성 분석)

  • Taeyoung Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.657-664
    • /
    • 2024
  • In the proposed paper, we analyzed the attenuation by atmospheric factors in the frequency bands for Radar. Radio frequencies using radar systems is susceptible to attenuation by atmospheric factors. The proposed paper analyze the attenuation by atmospheric factors in L, S, C and X bands. Among the attenuation of signals by atmospheric factors, the attenuation by water vapor and oxygen, which is atmospheric attenuation compared to the detection range, is at least 0.416 dB in the L band and 2.6 dB in the X band. The attenuation by rainfall is at least 0.06 dB in the L band and 20.2 dB in the X band. Finally, the attenuation by atmospheric factors is at least 0.416 dB in the L band and 22.8 dB in the X band. In conclusion, it is judged that the attenuation of atmospheric and rainfall is minimal in the L, S, and C bands, and that the influence of attenuation is large in the X band.

Ka Band Rain Attenuation Analysis of Domestic Regional Rainfall-Rate Distribution by Crane Prediction Model (Crane 예측 모델을 활용하여 국내 지역별 강우강도 분포에 따른 Ka대역 강우감쇠 분석)

  • Cho, Yongwan
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.110-113
    • /
    • 2016
  • In this paper of ka band satellite communication using geostationary satellite is very weak to rainfall. So the rain attenuation reflect the values calculated using the satellite communication links vulnerable when designing a more reliable rainfall area distribution of rain attenuation and accurate predictive models must analyze the link budget. In this paper, by utilizing domestic distribution analysis in the recent local rainfall Crane and regional rainfall in the model and compared with the country of the regional distribution of rainfall in your area to fit the rain attenuation in Ka band frequency characteristics Crane rain attenuation prediction models were analyzed to between geostationary satellites and ground station position, distance and year time percentage(%).

Rainfall-intensity distribution for an analysis of the effects of rain attenuation (강우감쇠의 영향 분석을 위한 국내 각 지역의 강우강도 분포)

  • 이형수;신철호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.1006-1015
    • /
    • 1998
  • In general, attenuation at frequencies over 20GHz is mainly due to absorption by satmospheric gases, rain, and snow. Among this factors rain become an important limiting factor. Rain attenuation is highly influenced by rainfall-intensity and it varies over time and space. Thus it is requeired to obtain spatial and temporal data of rainfall-intensity for precise prediction of rainfall attenuation. In this paper, rainfall intensity of thiry-two measurement sites in South Korea excluding JeiJdo Islands over recent ten years is obtained and the regional relation between rainfall-intensity and percent of time is analyzed. Also we present the new method about rainfall-intensity cumulative distribution.

  • PDF

A Study on the Rainfall Attenuation Adaptive Power Control System for Implementing B-WLL (B-WLL 구현을 위한 강우감쇠 적응형 출력제어장치에 대한 고찰)

  • 목진담;정희창
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.462-466
    • /
    • 1999
  • As the spectrum migrates to the higher frequency band around several milimeters wavelength for implementing wideband highspeed communications, it is more important to consider the channel attenuation characteristics of microwave signals. Microwave channels in 27GHz used in B-WLL system must be considered by compensating the power attenuation due to rainfall. So, in the design of one cell, the radiation power enhancement considering rainfall attenuation has an effort on the receiver in other cell as interference. In this paper we consider the main characteristics for B-WLL systems, optimum cell radius, and serviceable limit of heavy rainfall the design of the radiation power control system in case of enhancing the power that prevents from reducing the system capacity by interference.

  • PDF

Rain Attenuation Analysis for Designing UAV Data Link on Ku-Band (Ku대역 무인항공기 데이터 링크 설계를 위한 강우감쇠 분석)

  • Lee, Jaeyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1248-1256
    • /
    • 2015
  • It is necessary to apply an exact data and a precise prediction model for a rain attenuation to design the link margin for a data link using Ku-band with the serious effect by rain. In this paper, we investigate the regional rainfall-rate distribution of Korea proposed in TTAK.KO-06.0122/R1 and compare it with the distribution provided by Rec. ITU-R PN.837-1 and Crane. And, the rain rate climate regions similar with the rainfall-rate distribution of Korea in Rec. ITU-R PN.837-1 and Crane model are selected. Finally, using Rec. ITU-R P.618-8 and Crane rain attenuation prediction model, we derive and analyze the rain attenuation for Ku-band frequency according to the time percentage of an average year and the distance of wireless communication link between unmanned aerial vehicle (UAV) and ground data terminal (GDT).

An Analysis on the Propagation Prediction Model of Earth-space Communication Link using Local Data (로컬 데이터를 이용한 지구-우주 통신 링크의 전파 예측 모델 분석)

  • Lee, Hwa-Choon;Kim, Woo-Su;Choi, Tae-Il;Oh, Soon-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.483-488
    • /
    • 2019
  • The propagation prediction model of the earth-space communication link used as an international standard was used to calculate and analyze the total losses on the communication path. The standard definition and scope of ITU-R Rec. were analyzed for each parameter(rain, scintillation, atmospheric gas, clouds) used to calculate the total loss. The total losses were calculated using the standard model for each parameter and the statistical data provided by ITU-R, and the results were analyzed using the validation examples data. The rain losses were calculated using long-term local rainfall attenuation statistics data measured in the region, and compared with the calculation results using a rainfall map in the ITU-R Recommendation. The data of Cheollian satellites for the L-Band and Ka-Band were used to calculate the rainfall attenuation. In the range of 0.01% to 0.1%, it was found to have a greater attenuation slope when using local data than attenuation by the model of ITU-R.

Analysis of Ka Band Satellite Link Budgets and Earth Station G/T in Korea Rainfall Environment (국내 강우 환경에서 Ka 밴드 위성 링크 버짓 및 지구국 G/T 분석)

  • Choi, Hyeong-Jae;You, Kyoung-A;Park, Dae-Kil;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.151-157
    • /
    • 2019
  • In geostationary satellite communications, which are widely used for broadcasting and communication, there is a path loss where the signal power on the path is largely reduced. It is important to consider rain attenuation when calculating link budget because the Ka band frequency is vulnerable to rain attenuation. In this study, rainfall trends were analyzed by using rainfall data from the year 2000 in four regions of Korea (Seoul, Incheon, Busan, Jeju) and the rainfall attenuation was calculated. This was used to analyse the satellite link budget and receiving performance for the down-link of the korea satellite COMS. In this study, the calculated G/T for the rainfall intensity of 0.5% per year using the rainfall data for 18 years increased by approximately $8.5dBK^{-1}$ compared to the ITU's zone-K rain model, and decreased by approximately $1dBK^{-1}$ compared to the precipitation data for 13 years from the TTA(Korea Telecommunications Technology Association). The results of this study can be used for the design of G/T in domestic-installed satellite ground station.

The Effect Analysis for Rain Attenuation of VSAT

  • Tak, Hong-Sung;Wook, Shin-Gang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.65.4-65
    • /
    • 2001
  • In case of data transmission using the upper 10GHz frequency, rain results in attenuation of radio waves. And the most serious atmospheric effect in a satellite link is the rainfall. The attenuation of rainfall very seriously affects the quality of transmission line. Because the rain increases thermal noise and interference, and decreases the amplitude of the signal. KOWACO manages the VSAT system instead of VHF network for communication of rain and water-level data from 1998. The purpose of this system is to monitor the change of water-level and rain data during a flood duration. VHF system acquires the data by a call per a hour. But the satellite network obtains the data whenever event data occur. Thus the satellite network is more powerful than the VHF system. In study ...

  • PDF

Conversion of Rain Rate Cumulative Distributions by Multiple Regression Model (다중회기모형에 의한 강우강도 누적분포의 변환)

  • Dung, Luong Ngoc Thuy;Sohn, Won
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.13-15
    • /
    • 2014
  • At frequencies above 10 GHz, rain is a dominant propagation phenomenon on satellite link attenuation. The prediction of rain attenuation is based on the point rainfall rate for 0.01 % of an average year with one minute integration time. Most of available rain data have been measured with 60 minutes integration time, and many researchers have been studying on converting the rainfall rate data from various integration times to one minute integration time. This paper proposes a new Multiple Regression model for the conversion, and the proposed schemes show better performance than the existing schemes.