• Title/Summary/Keyword: Attenuation Effect

Search Result 589, Processing Time 0.033 seconds

Development of Medical Ultrasound Imaging Techniques for Tissue Characterization (Attenuation Effect on Measurement and Tomography of Nonlinear Parameter) (조직 정량화를 위한 의용 초음파 영상 기술 개발(비선형 파라미터의 측정 및 단층영상에 미치는 감쇠의 영향))

  • 이현주;이강호;최종호;최종수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1916-1924
    • /
    • 1990
  • In this paper attenuation effect on the measurement and the tomography of nonlinear parameter is discussed. We perform computer simulation with the method using harmonic components and the method using secondary wave components, and then estimate attenuation effect through the results and compare two measurement techniques. According to simulation result the attenuation effect is more intensive as large n and \ulcorner, and the degree of the attenuation effect is represented as error functions. In the aspect of measuremnet techniques, the method using secondary wave components is more insensitive to attenuation effect than the method using harmonic compnents. We obtain the same result in the nonlinear tomography, and show that the attenuation compensive filter is required because the whole tomogram is affected by frequency dependent attenuation(or nonlinear attenuation)

  • PDF

Estimation of Path Attenuation Effect from Ground Motion in the Korean Peninsula using Stochastic Point-source Model (추계학적 점지진원 모델을 사용한 한반도 지반 운동의 경로 감쇠 효과 평가)

  • Jee, Hyun Woo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.9-17
    • /
    • 2020
  • The stochastic point-source model has been widely used in generating artificial ground motions, which can be used to develop a ground motion prediction equation and to evaluate the seismic risk of structures. This model mainly consists of three different functions representing source, path, and site effects. The path effect is used to emulate decay in ground motion in accordance with distance from the source. In the stochastic point-source model, the path attenuation effect is taken into account by using the geometrical attenuation effect and the inelastic attenuation effect. The aim of this study is to develop accurate equations of ground motion attenuation in the Korean peninsula. In this study, attenuation was estimated and validated by using a stochastic point source model and observed ground motion recordings for the Korean peninsula.

Development of Medical Ultrasound Imaging Techniques for Tissue Characterization (The Correction Method of Diffraction Effect in Measurements of Attenuation Coefficient) (조직 정량화를 위한 의용 초음파 영상 기술 개발(감쇠계수 측정에서 회질 영향의 보정법))

  • 한성현;이강호;최종호;최종수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1925-1932
    • /
    • 1990
  • In this paper, we consider the effect of diffraction due to the finite-sized aperture and propose the new correction method of errors in measurements of attenuation coefficient owing to the diffraction effect. In the existing correction method, we obtained the attenuation coefficient after correct the spectrum at each depth. However, this paper obtain the attenuation coefficient using lg-spectral difference approach and then correct errors. As a proposed method is not correction for the spectrum at each depth but the difference spectrum, we reduce the calculation. Also the correction is performed through the total frequency range, the accurate attenuation coefficient in whole bandwidth is produced.

  • PDF

Numerical Study on the Attenuation Effect of Water Mist on Thermal Radiation (미세물분무에 의한 열복사 감쇠 효과에 대한 수치해석 연구)

  • Ko, Gwon Hyun
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.7-12
    • /
    • 2020
  • A numerical study was conducted to investigate the effects of the spray characteristics of water mist on the attenuation of thermal radiation. The attenuation process of the thermal radiation, generated from a hot surface panel, passing through the water mist was calculated via Fire Dynamics Simulator (FDS), and the effects of the flow rate, droplet mean diameter, and spray injecting angle of the water mist were analyzed. The results indicated that the increase in flowrate and decrease in droplet size led to an increase in the attenuation of thermal radiation. As the thermal radiation passed through the spray droplets, the effect of the spatial distribution of spray droplets was verified by calculating the thermal radiation attenuation at different spray injecting angles. The results indicated that the radiation attenuation increases as the spray angle increases. This implies that a wider distribution of spray droplets, irrespective of the droplet size and flowrate, increases the attenuation effect on thermal radiation.

STUDY ON THE EFFECT OF THE SELF-ATTENUATION COEFFICIENT ON γ-RAY DETECTOR EFFICIENCY CALCULATED AT LOW AND HIGH ENERGY REGIONS

  • El-Khatib, Ahmed M.;Thabet, Abouzeid A.;Elzaher, Mohamed A.;Badawi, Mohamed S.;Salem, Bohaysa A.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.217-224
    • /
    • 2014
  • The present work used the efficiency transfer method used to calculate the full energy peak efficiency (FEPE) curves of the (2"*2" & 3"*3") NaI (Tl) detectors based on the effective solid angle subtended between the source and the detector. The study covered the effect of the self attenuation coefficient of the source matrix (with a radius greater than the detector's radius) on the detector efficiency. $^{152}$ An Eu aqueous radioactive source covering the energy range from 121.78 keV up to 1408.01 keV was used. In this study an empirical formula was deduced to calculate the difference between the measured and the calculated efficiencies [without self attenuation] at low and high energy regions. A proper balance between the measured and calculated efficiencies [with self attenuation] was achieved with discrepancies less than 3%, while reaching 39% for calculating values [without self attenuation] due to working with large sources, or for low photon energies.

A study of the Indoor-Impulse Noise Attenuation Effect for the Hearing Protection Devices (청각 보호 장구의 실내 충격소음 차음성능에 관한 연구)

  • Chung, Sung-Hak;Song, Kee-Hyeok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.37-42
    • /
    • 2014
  • The objective of this study is the frequency of the noise source 170 dB level of impulsive sound attenuation performance by earplugs to identify, to analyze the frequency characteristics of a shape and pattern. The attenuation performance of the impulsive noise by the frequency levels on the Combat Arm and 3M Form types 1100 Earplugs were evaluated. In order to check the sound attenuation performance of the B&K head and torso simulator and sound attenuation performance of the ear simulator data was verified. Previous studies have most impact, even in the noise source and the impulse noise level is 140 dB, but this study is higher than that of the impulsive noise source features. The results of the impulse noise attenuation effect is frequency-dependent mean 28.58 dB.

Analysis of Rain Effect on the Satellite Signal in Changwon-Masan('88~'97) (창원-마산지역에서 위성신호에 대한 강우의 영향 분석 ('88~'97))

  • 하연철;고봉진
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.779-785
    • /
    • 1999
  • The satellite signals have attenuation when Satellite path have rain. The signal attenuation by rain is effected over 100Hz and higher frequency signal have very serious attenuation. The rain attenuation is due mostly to rain rate and rain rate data over 10 years need to estimate characteristics of distribution of ram rate. In this paper, We have obtained the rain characteristics from on the recent data(1988-1997) for Changwon-Masan approximated with Moupfouma New Model, and then estimated the rain attenuation using ITU-R, Global and SAM methods, and finally, Effect of rain was analyzed.

  • PDF

The Effect of Increased Running Speed on the Magnitude of Impact Shock Attenuation during Ground Contact (착지 시 달리기 속도 증가가 충격 쇼크 흡수에 미치는 영향)

  • Ryu, Jiseon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.3
    • /
    • pp.197-204
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the effect of increased running speed on the magnitude of impact shock attenuation in high frequency (9~20 Hz) at support phase on the treadmill running. Method: Twenty-four healthy male heel-toe runners participated in this study. Average age, height, mass, and preference running speed were 23.43±3.78 years, 176.44±3.38 cm, 71.05±9.04 kg, and 3.0±0.5 m/s, respectively. Three triaxial accelerometer (Noraxon, USA) were mounted to the tuberosity of tibia, PSIS (postero-superior iliac spine), and forehead to collect acceleration signals, respectively. Accelerations were collected for 20 strides at 1,000 Hz during treadmill (Bertec, USA) running at speed of 2.5, 3.0, 3.5, and 4.0 m/s. Power Spectrum Density (PSD) of three acceleration signals was calculated to use in transfer function describing the gain and attenuation of impact shock between the tibia and PSIS, and forehead. One-way ANOVA were performed to compare magnitude of shock attenuation between and within running speeds. The alpha level for all statistical tests was .05. Results: No significant differences resulted for magnitude of the vertical and resultant impact shock attenuation between the tibia and PSIS, and forehead between running speeds. However, significant differences within running speed were found in magnitude of the vertical shock attenuation between tibia and PSIS, tibia and forehead at speed of 2.5, 3.0 m/s, respectively. Conclusion: In conclusion, it might be conjectured that muscles covering the knee and ankle joints and shoe's heel pad need to strengthen to keep the lower extremities from injuries by impact shock at relatively fast running speed that faster than preferred running speed.

Effect of Moisture Conditions in Soils on Mode Attenuation of Guided Waves in Buried Pipes (지반의 수분 상태에 따른 매립 배관에서의 유도초음파 모드 감쇠 변화)

  • Lee, Ju-Won;Shin, Sung-Woo;Na, Won-Bae;Kim, Young-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.4
    • /
    • pp.42-47
    • /
    • 2010
  • Recently, many techniques have been developed for the inspection of pipelines using guided waves. However, few researches have been made on the application of those techniques for buried underground pipes. Guided wave motions in the buried pipes are somewhat different from those of on-ground pipes which have traction-free (air) boundary condition on outer pipe walls and thus are strongly affected by the mechanical property of the surrounding soils. Therefore, it should be investigated the effect of soil properties on the guided wave behavior in buried pipe. On the other hand, the mechanical property of soil is largely depending on its moisture conditions nevertheless of other influential factors such as void ratio. In this study, the effect of moisture conditions in soils on mode attenuation of guided waves in the buried pipe is investigated. To this end, numerical study is performed to characterize mode attenuation behavior in buried pipes and the effective mode which is suitable for long range inspection is identified.

Prediction of Effect Zone for Marine Organisms Using Distance Attenuation Equations for Oceanic Noise (수중소음 거리감쇠 특성식을 이용한 해양생물 피해영향범위 예측)

  • Ha, Jeong-Min;Lee, Jong-Myeong;Lee, Jeong-Hoon;Gu, Dong-Sik;Choi, Byeong-Keun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.14-19
    • /
    • 2012
  • There are insufficient data to consider the effect zone for the marine life of coastal fisheries, because no standard has been defined for the sound level of marine life. In this study, equations for distance attenuation were used to determine the effect zone for oceanic noises. A reference noise level was divided into 4 parts to consider the characteristics of the fishes, and the effect zone of each reference noise level was determined. To increase the reliability of the effect scope, approximately 100 repetitions of blasting work split into several parts by the boring depth, the sound level of the source caused by an increase in weight, and the effect zone were calculated using the prediction equation. According to the prediction, the maximum distance of the effect zone was 4.92 km.