• 제목/요약/키워드: Attenuation Coefficients

검색결과 202건 처리시간 0.021초

Blu-ray 디스크 드라이브 시스템 트래킹 서보시스템에 대한 견실비약성 $H^{\infty}$ 상태궤환 제어기 설계 (Robust and Non-fragile $H^{\infty}$ Controller Design for Tracking Servo of Blu-ray disc Drive System)

  • 이형호;김준기;김원기;조상우;박홍배
    • 전자공학회논문지SC
    • /
    • 제45권3호
    • /
    • pp.32-41
    • /
    • 2008
  • 본 논문에서는 blu-ray 디스크 드라이버의 트랙킹 서보시스템에 대하여 플랜트와 제어기의 불확실성을 보상하는 견실비약성 $H^{\infty}$ 상태궤환 제어기 설계방법을 제안한다. 플랜트와 제어기의 불확실성을 매개변수화 선형행렬부등식(PLMI: parameterized linear matrix inequality)을 이용하여 구조화된 불확실성의 형태로 표현하며, Lyapunov 함수를 이용하여 구조적인 제어기의 이득섭동을 고려한 견실비약성 $H^{\infty}$ 상태궤환 제어기가 존재할 충분조건 및 제어기 설계방법을 PLMI의 형태로 제안한다. 또한, 완화기법(relaxation technique)을 통하여 PLMI를 유한개의 LMI의 형태로 변환하여 견실하고 최적화된 제어기 이득과 제어기 섭동 범위를 계산하고, 모의실험을 통해서 제시된 제어기의 타당성 및 견실성(robustness)과 비약성(non-fragility)을 검증한다.

공중화분에 의한 시정장애 현상의 물리적 및 화학적 특성 규명 (Physico-Chemical Characteristics of Visibility Impairment by Airborne Pollen)

  • 김경원
    • 한국대기환경학회지
    • /
    • 제22권6호
    • /
    • pp.863-875
    • /
    • 2006
  • Intensive visibility monitoring was conducted to investigate physical and chemical characteristics of visibility impairment by airborne pollen. Light attenuation coefficients were optically measured by a transmissometer, a nephelometer, and an aethalometer. Elemental, ionic, and carbonaceous species were chemically analyzed on the filters collected by $PM_{2.5}$ and $PM_{10}$ samplers. Aerosol size distribution was analyzed using a cascade impactor during airborne pollen period. Airborne pollen count was calculated using a scanning electron microscope. Airborne pollen was emitted into the atmosphere in springtime and funker degraded visibility through its scattering and absorbing the light. Average light extinction coefficient was measured to be $211{\pm}36Mm^{-1}$ when airborne pollen was not observed. But it increased to $459{\pm}267Mm^{-1}$ during the airborne pollen period due to increase of average $PM_{2.5}$ and $PM_{10}$ mass concentration and relative humidity and airborne pollen count concentration for $PM_{10}$, which were measured to be $46.5{\pm}29.1{\mu}g\;m^{-3},\;97.0{\pm}41.7{\mu}g\;m^{-3},\;54.1{\pm}11.6%$, and $68.2{\pm}89.7m^{-3}$, respectively. Average light extinction efficiencies for $PM_{2.5}$ and $PM_{10}$ were calculated to be $5.9{\pm}0.9$ and $4.5{\pm}0.8m^2 g^{-1}$ during the airborne pollen period. Light extinction efficiency for $PM_{10}$ increased further than that for $PM_{2.5}$. The average light extinction budget by airborne pollen was estimated to be about 24% out of the average measured light extinction coefficient during the airborne pollen period.

박막광도파로 센서를 이용한 산화 및 환원 혈색소의 새로운 흡광계수 측정법 (A New Method for Determining the Absorption Coefficient of Oxy- and Deoxyhemoglobin by use of a Thin-fi im Optical Waveguide Sensor)

  • 강신원
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권4호
    • /
    • pp.387-394
    • /
    • 1995
  • 박막광도파로 센서의 특소전파상수를 이용하여 인간혈액내의 산화 및 환원 혈색소의 흡광계수를 쉽고 빠르게 측정할 수 있는 방법을 제안한다. 제작된 광도파로위에 에바네센트 필드와 시료간의 상호작용길이를 변화시킬수 있도록 직렬의 다채널 시료 충전셀을 만들고 여러가지 농도의 두가지 혈색소 시료들에 대한 센서응답을 조사하여 상호작용길이에 대한 의존성을 살펴보았다. 센서응답은 상호작용길이와 시료의 농도에 선형적으로 비례한다. 시료들과 에바네센트 필드 흡수에 따른 제작된 센서의 감쇄정수를 실험적으로 구하고 제한된 방법으로 흡광계수를 결정한다. 제안된 방법으로 구한 두가지 혈색소에 대한 흡광계수는 종래의 투과광 측정법으로 구한 값과 잘 일치한다.

  • PDF

파라미터 불확실성 시스템에 대한 견실 비약성 $H^\infty$ 제어기 설계 ((Robust Non-fragile $H^\infty$ Controller Design for Parameter Uncertain Systems))

  • 조상현;김기태;박홍배
    • 전자공학회논문지SC
    • /
    • 제39권3호
    • /
    • pp.183-190
    • /
    • 2002
  • 본 논문에서는 구조화된 어파인(affine) 파라미터 불확실성을 가지는 시변 선형시스템과 구조적 불확실성을 가지는 상태궤환 제어기에 대한 견실 비약성 H∞ 제어기 설계방법을 다루었다. 또한 견실 비약성 H∞ 제어기가 존재할 충분조건, 제어기 설계방법 및 비약성을 만족하는 제어기의 꽉찬 집합(compact set)을 제시하였다. 이 때 제시한 조건은 변수치환과 슈어 여수(Schur complement)정리를 통하여 선형행렬부등식 (LMI : Linear Matrix Inequality)의 계수가 꽉찬 집합 내의 파라미터의 함수로 정의되는 파라미터화 선형 행렬부등식(PLMls: parameterized Linear Matrix Inequalities)으로 표현되므로 분리 볼록개념 (separated convexity concepts)에 기초한 완화기법을 이용하여 유한개의 LMI로 변환하였다. 그리고 본론문에서 제시한 견실 비약성 H∞ 제어기가 제어기이득의 변화에도 불구하고 폐루프시스템의 점근적 안정성 (asymptotic stability)과 외란감쇠 성능을 보장함을 보였다.

MRAM read와 write line의 S-parameter 해석 (S-parameter Analysis for Read and Write Line of MRAM)

  • 박승영;조순철
    • 한국자기학회지
    • /
    • 제13권5호
    • /
    • pp.216-220
    • /
    • 2003
  • 본 연구에서는 MRAM(magnetic random access memory)이 10 GHz까지 높은 주파수에서 동작할 때 쓰기 신호와 읽기 신호가 얼마나 효율적으로 전달되는지 계산하였다. 이를 위해 읽기와 쓰기에 필요한 도선이 있는 시편을 3차원으로 모델링하였다. 모의실험은 쓰기 동작과 읽기 동작으로 나눠서 수행되었고, FEM(finite element method) 알고리즘을 이용하여 S-parameter를 출력하였다. 계산된 결과를 이용하여 실험적으로 설계된 MRAM 시편의 쓰기와 읽기 동작에서 전송계수 S$_{21}$을 각각 DC에서 1 GHz 그리고 100 GHz 까지의 영역에서 해석하였다. 또한 각각의 길이가 600 $\mu$m인 bit line과 sense line사이의 절연체 두께를 500에서 1500$\AA$으로 변화시켰을 때, 3 dB 감쇄 주파수를 135에서 430 MHz까지 약 3.3배 높일 수 있었다. 그리고 계산된 S-parameter를 이용하여 전달 지연을 계산하여 접근시간을 예측하였다.

Out-of-Band Measurement of LED-based Solar Blind UV Filters

  • Cui, Muhan;Zhou, Yue;Chen, Xue;Yan, Feng;Zhang, Mingchao;Yang, Huaijiang
    • Journal of the Optical Society of Korea
    • /
    • 제18권3호
    • /
    • pp.244-250
    • /
    • 2014
  • Due to the difficulty in measuring very low out-of-band cutoff depths of solar blind UV filters, we propose a cutoff depth adjustable measurement system (CDAM) to test deep cutoff filters with a large dynamic range. The CDAM utilizing the substitution method is elaborately composed of several parts, including narrow-band LED light sources, standard reflective neutral attenuators with known attenuation coefficients, and a photomultiplier (PMT). This paper also presents an attenuator combination method ensuring that the PMT works within its linear response range. In addition, numerical simulation testifies to the method, and experiment shows that the CDAM system can achieve an extension of dynamic range from 0-6 OD to 0-10 OD, which is sufficient for the measurement of out-of-band cutoff depths of solar blind UV filters. Above all, the CDAM system, being easily implemented, of wide dynamic range, and highly precise, could be widely used in the measurement of filter cutoff depth.

Investigation of the suitability of new developed epoxy based-phantom for child's tissue equivalency in paediatric radiology

  • Yucel, Haluk;Safi, Aziz
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4158-4165
    • /
    • 2021
  • In this study, tissue equivalency (TE) of a newly developed epoxy-based phantom to 3-5 years child's tissue was investigated in paediatric energy range. Epoxy-based TE-phantoms were produced at different glandular/adipose (G/A) ratios of 17/83%, 31/69%, 36/64% and 10/90%. A procedure was developed in which specific amounts of boron, calcium, magnesium, sulphur compounds are mixed with epoxy resin, together with other minor substitutes. In paediatric energy range of 40-60 kVp half-value layer (HVL) values were measured and then Hounsfield Units (HU) were determined from Computed Tomography(CT) scans taken in the X-ray energy range of 80-120kVp. It is found that radiation absorption properties of these phantoms in terms of the measured HVL values related to linear attenuation coefficients (µ) are very well mimicking a 3 years child's soft tissue in case a ratio of 10/90%G/A. Additionally, the HU values of phantoms were determined from the CT scans. The HU = 47.8 ± 4.8 value was found for the epoxy-based phantom produced at a ratio of 10/90%G/A. The obtained HVL and HU values also support the suitability of the new epoxy based-phantom produced at a ratio of 10/90%G/A for a satisfactory mimicking a 3 years child's soft tissue by 5%. Thus they can have a potential use to perform the quality controls of medical X-ray systems and dose optimization studies.

Particle loading as a design parameter for composite radiation shielding

  • Baumann, N.;Diaz, K. Marquez;Simmons-Potter, K.;Potter, B.G. Jr.;Bucay, J.
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3855-3863
    • /
    • 2022
  • An evaluation of the radiation shielding performance of high-Z-particle-loaded polylactic acid (PLA) composite materials was pursued. Specimens were produced via fused deposition modeling (FDM) using copper-PLA, steel-PLA, and BaSO4-PLA composite filaments containing 82.7, 75.2, and 44.6 wt% particulate phase contents, respectively, and were tested under broad-band flash x-ray conditions at the Sandia National Laboratories HERMES III facility. The experimental results for the mass attenuation coefficients of the composites were found to be in good agreement with GEANT4 simulations carried out using the same exposure conditions and an atomistic mixture as a model for the composite materials. Further simulation studies, focusing on the Cu-PLA composite system, were used to explore a shield design parameter space (in this case, defined by Cu-particle loading and shield areal density) to assess performance under both high-energy photon and electron fluxes over an incident energy range of 0.5-15 MeV. Based on these results, a method is proposed that can assist in the visualization and isolation of shield parameter coordinate sets that optimize performance under targeted radiation characteristics (type, energy). For electron flux shielding, an empirical relationship was found between areal density (AD), electron energy (E), composition and performance. In cases where ${\frac{E}{AD}}{\geq}2MeV{\bullet}cm{\bullet}g^{-1}$, a shield composed of >85 wt% Cu results in optimal performance. In contrast, a shield composed of <10 wt% Cu is anticipated to perform best against electron irradiation when ${\frac{E}{AD}}<2MeV{\bullet}cm{\bullet}g^{-1}$.

Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

  • Mohamed Amin;Ahmad A. Hakamy;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.29-53
    • /
    • 2023
  • High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete's engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.

Negative Turbulent Magnetic 𝛽 Diffusivity effect in a Magnetically Forced System

  • Park, Kiwan;Cheoun, Myung-Ki
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.47.3-48
    • /
    • 2021
  • We studied the large scale dynamo process in a system forced by helical magnetic field. The dynamo process is basically nonlinear, but can be linearized with 𝛼&𝛽 coefficients and large scale magnetic field $\bar{B}$. This is very useful to the investigation of solar (stellar) dynamo. A coupled semi-analytic equations based on statistical mechanics are used to investigate the exact evolution of 𝛼&𝛽. This equation set needs only magnetic helicity ${\bar{H}}_M({\equiv}{\langle}{\bar{A}}{\cdot}{\bar{B}}{\rangle},\;{\bar{B}}={\nabla}{\times}{\bar{A}})$ and magnetic energy ${\bar{E}}_M({\equiv}{\langle}{\bar{B}}^2{\rangle}/2)$. They are fundamental physics quantities that can be obtained from the dynamo simulation or observation without any artificial modification or assumption. 𝛼 effect is thought to be related to magnetic field amplification. However, in reality the averaged 𝛼 effect decreases very quickly without a significant contribution to ${\bar{B}}$ field amplification. Conversely, 𝛽 effect contributing to the magnetic diffusion maintains a negative value, which plays a key role in the amplification with Laplacian ∇2(= - k2) for the large scale regime. In addition, negative magnetic diffusion accounts for the attenuation of plasma kinetic energy EV(= 〈 U2 〉/2) (U: plasma velocity) when the system is saturated. The negative magnetic diffusion is from the interaction of advective term - U • ∇ B from magnetic induction equation and the helical velocity field. In more detail, when 'U' is divided into the poloidal component Upol and toroidal one Utor in the absence of reflection symmetry, they interact with - B • ∇ U and - U • ∇ B from ∇ × 〈 U × B 〉 leading to 𝛼 effect and (negative) 𝛽 effect, respectively. We discussed this process using the theoretical method and intuitive field structure model supported by the simulation result.

  • PDF