• Title/Summary/Keyword: Attack Model

Search Result 1,005, Processing Time 0.028 seconds

A Software Vulnerability Analysis System using Learning for Source Code Weakness History (소스코드의 취약점 이력 학습을 이용한 소프트웨어 보안 취약점 분석 시스템)

  • Lee, Kwang-Hyoung;Park, Jae-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.46-52
    • /
    • 2017
  • Along with the expansion of areas in which ICT and Internet of Things (IoT) devices are utilized, open source software has recently expanded its scope of applications to include computers, smart phones, and IoT devices. Hence, as the scope of open source software applications has varied, there have been increasing malicious attempts to attack the weaknesses of open source software. In order to address this issue, various secure coding programs have been developed. Nevertheless, numerous vulnerabilities are still left unhandled. This paper provides some methods to handle newly raised weaknesses based on the analysis of histories and patterns of previous open source vulnerabilities. Through this study, we have designed a weaknesses analysis system that utilizes weakness histories and pattern learning, and we tested the performance of the system by implementing a prototype model. For five vulnerability categories, the average vulnerability detection time was shortened by about 1.61 sec, and the average detection accuracy was improved by 44%. This paper can provide help for researchers studying the areas of weaknesses analysis and for developers utilizing secure coding for weaknesses analysis.

Thermal and Flow Analysis of a Driving Controller for Active Destruction Protections (능동 파괴 방호 구동제어기의 열 유동 해석)

  • Ryu, Bong-Jo;Oh, Bu-Jin;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.235-242
    • /
    • 2017
  • A driving controller for active destruction protections can be applied to machinery, aerospace and military fields. In particular, this controller can be used to track and attack enemy flying objects through the active control. It is important to ensure reliability of the driving controller since its operation should be kept with precision to the target point. The temperature of the environment where the driving controller is used is about -32 C ~ 50 C (241~323 ). Heat generated in the driving controller should be maintained below a certain threshold (85 C (358 )) to ensure reliability; therefore, the study and analysis of the heat flow characteristics in the driving controller are required. In this research, commercial software Solid-Works Flow Simulation was used for the numerical simulation assuming a low Reynolds number turbulence model and an incompressible viscous flow. The goal of this paper is to design the driving controller safely by analyzing the characteristics of the heat flow inside of the controller composed of chips or boards. Our analysis shows temperature distributions for boards and chips below a certain threshold.

Comparative Study of Machine learning Techniques for Spammer Detection in Social Bookmarking Systems (소셜 복마킹 시스템의 스패머 탐지를 위한 기계학습 기술의 성능 비교)

  • Kim, Chan-Ju;Hwang, Kyu-Baek
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.5
    • /
    • pp.345-349
    • /
    • 2009
  • Social bookmarking systems are a typical web 2.0 service based on folksonomy, providing the platform for storing and sharing bookmarking information. Spammers in social bookmarking systems denote the users who abuse the system for their own interests in an improper way. They can make the entire resources in social bookmarking systems useless by posting lots of wrong information. Hence, it is important to detect spammers as early as possible and protect social bookmarking systems from their attack. In this paper, we applied a diverse set of machine learning approaches, i.e., decision tables, decision trees (ID3), $na{\ddot{i}}ve$ Bayes classifiers, TAN (tree-augment $na{\ddot{i}}ve$ Bayes) classifiers, and artificial neural networks to this task. In our experiments, $na{\ddot{i}}ve$ Bayes classifiers performed significantly better than other methods with respect to the AUC (area under the ROC curve) score as veil as the model building time. Plausible explanations for this result are as follows. First, $na{\ddot{i}}ve$> Bayes classifiers art known to usually perform better than decision trees in terms of the AUC score. Second, the spammer detection problem in our experiments is likely to be linearly separable.

Loop Probe Design and Measurement of Electromagnetic Wave Signal for Contactless Cryptographic Analysis (비접촉 암호 분석용 루프 프로브 설계 및 전자파 신호 측정)

  • Choi, Jong-Kyun;Kim, Che-Young;Park, Jea-Hoon;Moon, Snag-Jae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.10
    • /
    • pp.1117-1125
    • /
    • 2007
  • In this paper, a study has been performed on the design of small loop probe and analysis of induced electromagnetic wave signal from a smartcard for contactless cryptographic analysis. Probes for cryptographic analysis are different from conventional EM probes, because the purpose of proposed probe is to obtain the information for secret key analysis of cryptographic system. The waveform of induced voltage on probe must be very close to radiated waveform from IC chip on smartcard because electromagnetic attack makes an attempt to analyze the radiated waveform from smartcard. In order to obtain secret key information, we need to study about cryptographic analysis using electromagnetic waves, an approximate model of source, characteristic of probe for cryptographic analysis, measurement of electromagnetic waves and calibration of probes. We measured power consumption signal on a smartcard chip and electromagnetic wave signal using proposed probe and compared with two signals of EMA point of view. We verified experimently the suitability of the proposed small loop probe for contactless cryptographic analysis by applying ARIA algorithm.

Adaptive Consensus Bound PBFT Algorithm Design for Eliminating Interface Factors of Blockchain Consensus (블록체인 합의 방해요인 제거를 위한 Adaptive Consensus Bound PBFT 알고리즘 설계)

  • Kim, Hyoungdae;Yun, Jusik;Goh, Yunyeong;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.17-31
    • /
    • 2020
  • With the rapid development of block chain technology, attempts have been made to put the block chain technology into practical use in various fields such as finance and logistics, and also in the public sector where data integrity is very important. Defense Operations In addition, strengthening security and ensuring complete integrity of the command communication network is crucial for operational operation under the network-centered operational environment (NCOE). For this purpose, it is necessary to construct a command communication network applying the block chain network. However, the block chain technology up to now can not solve the security issues such as the 51% attack. In particular, the Practical Byzantine fault tolerance (PBFT) algorithm which is now widely used in blockchain, does not have a penalty factor for nodes that behave maliciously, and there is a problem of failure to make a consensus even if malicious nodes are more than 33% of all nodes. In this paper, we propose a Adaptive Consensus Bound PBFT (ACB-PBFT) algorithm that incorporates a penalty mechanism for anomalous behavior by combining the Trust model to improve the security of the PBFT, which is the main agreement algorithm of the blockchain.

Long-Term Performance Evaluation of Concrete Utilizing Oyster Shell in Lieu of Fine Aggregate (굴패각을 잔골재로 대체 사용한 콘크리트의 장기성능 평가)

  • Yang, Eun-Ik;Yi, Seong-Tae;Kim, Hak-Mo;Shim, Jae-Seol
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.280-287
    • /
    • 2003
  • To evaluate the practical application of oyster shells(OS) as construction materials, an experimental study was performed. More specifically, the long-term mechanical properties and durability of concrete blended with oyster shells were investigated. Test results indicate that long-term strength of concrete blended with 10% oyster shells is almost identical to that of normal concrete. However, the long-term strength of concrete blended with 20% oyster shells is appreciably lower than that of normal concrete. Thereby, concrete with higher oyster shell blend has the possibility of negatively influencing the concrete long-term strength. Elastic modulus of concrete blended with crushed oyster shells decreases as the blending mixture rate increases. Namely, the modulus is reduced to approximately 10∼15% when oyster shells are blended up to 20% as the fine aggregate. The drying shrinkage strain increases with an increasing crushed oyster shells substitution rate. In addition, the existing model code of drying shrinkage and creep do not coincide with the test results of this study. An adequate prediction equation needs to be developed. The utilization of oyster shells as the fine aggregate in concrete has an insignificant effect on fleering and thawing resistance, carbonation and chemical attack of concrete. However, water permeability is considerably improved.

Vulnerability Analysis and Detection Mechanism against Denial of Sleep Attacks in Sensor Network based on IEEE 802.15.4 (IEEE 802.15.4기반 센서 네트워크에서 슬립거부 공격의 취약성 분석 및 탐지 메커니즘)

  • Kim, A-Reum;Kim, Mi-Hui;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.1-14
    • /
    • 2010
  • IEEE 802.15.4[1] has been standardized for the physical layer and MAC layer of LR-PANs(Low Rate-Wireless Personal Area Networks) as a technology for operations with low power on sensor networks. The standardization is applied to the variety of applications in the shortrange wireless communication with limited output and performance, for example wireless sensor or virtual wire, but it includes vulnerabilities for various attacks because of the lack of security researches. In this paper, we analyze the vulnerabilities against the denial of sleep attacks on the MAC layer of IEEE 802.15.4, and propose a detection mechanism against it. In results, we analyzed the possibilities of denial of sleep attacks by the modification of superframe, the modification of CW(Contention Window), the process of channel scan or PAN association, and so on. Moreover, we comprehended that some of these attacks can mount even though the standardized security services such as encryption or authentication are performed. In addition to, we model for denial of sleep attacks by Beacon/Association Request messages, and propose a detection mechanism against them. This detection mechanism utilizes the management table consisting of the interval and node ID of request messages, and signal strength. In simulation results, we can show the effect of attacks, the detection possibility and performance superiorities of proposed mechanism.

Estimation of Longitudinal Dynamic Stability Derivatives for a Tailless Aircraft Using Dynamic Mesh Method (Dynamic Mesh 기법을 활용한 무미익 비행체 종축 동안정 미계수 예측)

  • Chung, Hyoung-Seog;Yang, Kwang-Jin;Kwon, Ky-Beom;Lee, Ho-Keun;Kim, Sun-Tae;Lee, Myung-Sup;Reu, Taekyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.232-242
    • /
    • 2015
  • For stealth performance consideration, many UAV designs are adopting tailless lambda-shaped configurations which are likely to have unsteady dynamic characteristics. In order to control such UAVs through automatic flight control system, more accurate estimation of dynamic stability derivatives becomes essential. In this paper, dynamic stability derivatives of a tailless lambda-shaped UAV are estimated through numerically simulated forced oscillation method incorporating dynamic mesh technique. First, the methodology is validated by benchmarking the CFD results against previously published experimental results of the Standard Dynamics Model(SDM). The dependency of initial angle of attack, oscillation frequency and oscillation magnitude on the dynamic stability derivatives of a tailless UAV configuration is then studied. The results show reasonable agreements with experimental reference data and prove the validity and efficiency of the concept of using CFD to estimate the dynamic derivatives.

Study of the Flush Air Data Sensing System for Subsonic and Supersonic Flows (아음속 및 초음속 유동의 플러시 대기자료 측정장치 연구)

  • Lee, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.831-840
    • /
    • 2019
  • Flush Air Data Sensing system (FADS) estimates air data states using pressure data measured at the surface of flight vehicles. The FADS system does not require intrusive probes, so it is suitable for high performance aircrafts, stealth vehicles, and hypersonic flight vehicles. In this study, calibration procedures and solution algorithms of the FADS for a sphere-cone shape vehicle are presented for the prediction of air data from subsonic to supersonic flights. Five flush pressure ports are arranged on the surface of nose section in order to measure surface pressure data. The algorithm selects the concept of separation for the prediction of flow angles and the prediction of pressure related variables, and it uses the pressure model which combines the potential flow solution for a subsonic flow with the modified Newtonian flow theory for a hypersonic flow. The CFD code which solves Euler equations is developed and used for the construction of calibration pressure data in the Mach number range of 0.5~3.0. Tests are conducted with various flight conditions for flight Mach numbers in the range of 0.6~3.0 and flow angles in the range of -10°~+10°. Air data such as angle of attack, angle of sideslip, Mach number, and freestream static pressure are predicted and their accuracies are analyzed by comparing predicted data with reference data.

Synthesis, Structure, and Reactivity of the [Fe4S4(SR)4]2- (R = 2-, 3-, and 4-Pyridinemethane) Clusters

  • Kim, Yu-Jin;Han, Jae-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.48-54
    • /
    • 2012
  • The $[Fe_4S_4]^{2+}$ clusters with 2-, 3-, and 4-pyridinemethanethiolate (S2-Pic, S3-Pic, and S4-Pic, respectively) terminal ligands have been synthesized from the ligand substitution reaction of the $(^nBu_4N)_2[Fe_4S_4Cl_4]$ (I) cluster. The new $(^nBu_4N)_2[Fe_4S_4(SR)_4]$ (R = 2-Pic; II, 3-Pic; III, 4-Pic; IV) clusters were characterized by FTIR and UV-Vis spectroscopy. Cluster II was crystallized in the monoclinic space group C2/c with a = 24.530 (5) $\AA$, b = 24.636(4) $\AA$, c = 21.762(4) $\AA$, ${\beta}=103.253(3)^{\circ}$, and Z = 8. The X-ray structure of II showed two unique 2:2 site-differentiated $[Fe_4S_4]^{2+}$ clusters due to the bidentate-mode coordination by 2-pyridinemethanethiolate ligands. Cluster III was crystallized in the same monoclinic space group C2/c with a = 26.0740(18) $\AA$, b = 23.3195(16) $\AA$, c = 22.3720(15) $\AA$, ${\beta}=100.467(2)^{\circ}$, and Z = 8. The 3-pyridinemethanethiolate ligand of III was coordinated to the $[Fe_4S_4]^{2+}$ core as a terminal mode. Cluster IV with 4-pyridinemethanethiolate ligands was found to have a similar structure to the cluster III. Fully reversible $[Fe_4S_4]^{2+}/[Fe_4S_4]^+$ redox waves were observed from all three clusters by cyclic voltammetry measurement. The electrochemical potentials for the $[Fe_4S_4]^{2+}/[Fe_4S_4]^+$ transition decreased in the order of II, III and IV, and the reduction potential changes by the ligands were explained based on the structural differences among the complexes. The complex III was reacted with sulfonium salt of $[PhMeSCH_2-p-C_6H_4CN](BF_4)$ in MeCN to test possible radical-involving reaction as a functional model of the [$Fe_4S_4$]-SAM (S-adenosylmethionine) cofactor. However, the isolated reaction products of 3-pyridinemethanethiolate-p-cyanobenzylsulfide and thioanisole suggested that the reaction followed an ionic mechanism and the products formed from the terminal ligand attack to the sulfonium.