• Title/Summary/Keyword: Attack Model

Search Result 1,005, Processing Time 0.028 seconds

A Study on Optimal Allocation of Short Surface-to-Air Missile (단거리 지대공 미사일의 최적배치에 관한 연구)

  • 이영해;남상억
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.1
    • /
    • pp.34-46
    • /
    • 2000
  • The object of this study is to construct a model for an optimal allocation of short surface to air missile defending our targets most efficiently from hostile aircraft´s attack. For the purpose of this, we analyze and establish facility allocation concept of existing models, apply set covering theory appropriate to problem´s properties, present the process of calculating the probability of target being protected, apply Sherali-Kim´s branching variable selection strategy, and then construct the model. As constructed model apply the reducing problem with application, we confirm that we can apply the large scale, real problem.

  • PDF

The characteristics of the flow field around canvas kite using the CFD (CFD를 이용한 범포 주위의 유동장 특성)

  • Bae, Bong-Seong;Bae, Jae-Hyun;An, Heui-Chun;Park, Seong-Wook;Park, Chang-Doo;Jeong, Eui-Cheol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.3
    • /
    • pp.169-178
    • /
    • 2006
  • This research aims at establishing the fundamental characteristics of the kite through the analysis of the flow field around various types of kites. The approach of this study were adopted for the analysis; visualization by CFD(computational fluid dynamics). Also, the lift/drag and PIV(particle image velocimetry) tests of kites had been performed in our previous finding. For this situation, models of canvas kite were designed by solidworks(design program) for the CFD test using the same conditions as in the lift/drag tests. And we utilized FloWorks as a CFD analysis program. The results obtained from the above approach are summarized as follows: According to comparison of the measured and analyzed results from mechanical tests, PIV and CFD test, the results of all test were similar. The numerical results of lift-coefficient and drag-coefficient were 5-20% less than those of the tests when attack angle is $10^{\circ},\;20^{\circ}\;and\;30^{\circ}$. In particular, it showed the 20% discrepancy at $40^{\circ}$. The numerical results of the ratio of drag and lift were 8-13% less than those of the tests at $10^{\circ}$ and 10% less than those of the tests at $20^{\circ},\;30^{\circ}\;and\;40^{\circ}$. Pressure distribution gradually became stable at $10^{\circ}$. In particular, the rectangular and triangular types had the centre of the high pressure field towards the leading edge and the inverted triangular type had it towards the trailing edge. The increase of the attack angle resulted in the eddy in order of the rectangular, triangular and inverted triangular type. The magnitude of the eddy followed the same order. The effect of edge-eddy was biggest in the triangular type followed by the rectangular and then the inverted triangular type. The action point of dynamic pressure as a function of the attack angle was close to the rear area of the model with the small attack angle, and with large attack angle, the action point was close to the front part of the model.

A Secure Authentication Method for Smart Phone based on User's Behaviour and Habits

  • Lee, Geum-Boon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.65-71
    • /
    • 2017
  • This paper proposes a smart phone authentication method based on user's behavior and habit that is an authentication method against shoulder surfing attack and brute force attack. As smart phones evolve not only storage of personal data but also a key means of financial services, the importance of personal information security in smart phones is growing. When user authentication of smart phone, pattern authentication method is simple to use and memorize, but it is prone to leak and vulnerable to attack. Using the features of the smart phone pattern method of the user, the pressure applied when touching the touch pad with the finger, the size of the area touching the finger, and the time of completing the pattern are used as feature vectors and applied to user authentication security. First, a smart phone user models and stores three parameter values as prototypes for each section of the pattern. Then, when a new authentication request is made, the feature vector of the input pattern is obtained and compared with the stored model to decide whether to approve the access to the smart phone. The experimental results confirm that the proposed technique shows a robust authentication security using subjective data of smart phone user based on habits and behaviors.

Flutter stability of a long-span suspension bridge during erection

  • Han, Yan;Liu, Shuqian;Cai, C.S.;Li, Chunguang
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.41-61
    • /
    • 2015
  • The flutter stability of long-span suspension bridges during erection can be more problematic and more susceptible to be influenced by many factors than in the final state. As described in this paper, numerical flutter stability analyses were performed for the construction process of Zhongdu Bridge over Yangtze River using the commercial FE package ANSYS. The effect of the initial wind attack angle, the sequence of deck erection, the stiffness reduction of stiffening girders, the structural damping, and the cross cables are discussed in detail. It was found that the non-symmetrical sequence of deck erection was confirmed to be aerodynamically favourable for the deck erection of long-span suspension bridges and the best erection sequence should be investigated in the design phase. While the initial wind attack angle of $-3^{\circ}$ is advantageous for the aerodynamic stability, $+3^{\circ}$ is disadvantageous compared with the initial wind attack angle of $0^{\circ}$ during the deck erection. The stiffness reduction of the stiffening girders has a slight effect on the flutter wind speed of the suspension bridge during erection, but structural damping has a great impact on it, especially for the early erection stages.

Formal Specification and Verification for S/KEY Against Dictionary Attack (사전공격 방지를 위한 S/KEY의 정형 명세 및 검증)

  • Kim Il-Gon;Choi Jin-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1218-1225
    • /
    • 2004
  • S/KEY system was proposed to guard against intruder's password replay attack. But S/KEY system has vulnerability that if an attacker derive passphrase from his dictionary file, he can acquire one-time password required for user authentication. In this paper, we propose a correct S/KEY system mixed with EKE to solve the problem. Also, we specify a new S/KEY system with Casper and CSP, verify its secrecy and authentication requirements using FDR model checking tool.

Optimal Network Defense Strategy Selection Based on Markov Bayesian Game

  • Wang, Zengguang;Lu, Yu;Li, Xi;Nie, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5631-5652
    • /
    • 2019
  • The existing defense strategy selection methods based on game theory basically select the optimal defense strategy in the form of mixed strategy. However, it is hard for network managers to understand and implement the defense strategy in this way. To address this problem, we constructed the incomplete information stochastic game model for the dynamic analysis to predict multi-stage attack-defense process by combining Bayesian game theory and the Markov decision-making method. In addition, the payoffs are quantified from the impact value of attack-defense actions. Based on previous statements, we designed an optimal defense strategy selection method. The optimal defense strategy is selected, which regards defense effectiveness as the criterion. The proposed method is feasibly verified via a representative experiment. Compared to the classical strategy selection methods based on the game theory, the proposed method can select the optimal strategy of the multi-stage attack-defense process in the form of pure strategy, which has been proved more operable than the compared ones.

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.

Relationship of Workplace Violence to Turnover Intention in Hospital Nurses: Resilience as a Mediator (병원 간호사의 직장 폭력경험과 이직의도의 관계에서 극복력의 매개작용)

  • Kang, Hyun-Jung;Shin, Jaeyong;Lee, Eun-Hyun
    • Journal of Korean Academy of Nursing
    • /
    • v.50 no.5
    • /
    • pp.728-736
    • /
    • 2020
  • Purpose: This study aimed to identify the relationship between workplace violence and turnover intention, and the mediation effect of resilience on the relationship in hospital nurses. Methods: This was a cross-sectional study. A total of 237 registered nurses were recruited from three hospitals in South Korea from April to May 2019. Participants were invited to complete self-reported questionnaires that measure workplace violence, turnover intention, resilience, and demographic information. The data obtained were analyzed using multiple regression and a simple mediation model applying the PROCESS macro with 95% bias-corrected bootstrap confidence interval (5,000 bootstrap resampling). Results: After controlling demographic covariates, workplace violence significantly accounted for the variance of turnover intention. It was also demonstrated that resilience partially mediated the relationship between workplace violence and turnover intention in hospital nurses. A 73.8% of nurses had experienced workplace violence (such as attack on personality, attack on professional status, isolation from work, or direct attack). Conclusion: Workplace violence directly influences turnover intention of nurses and indirectly influences it through resilience. Therefore, hospital administrators need to develop and provide a workplace violence preventive program and resilience enhancement program to decrease nurses' turnover intention, and leaving.

A Computational Study of the Vortical Flows over a Delta Wing At High-Angle of Attack (고영각의 델타익에서 발생하는 와유동에 관한 수치해석적 연구)

  • Kim Hyun-Sub;Kweon Yong-Hun;Kim Heuy-Dong;Shon Myong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.795-798
    • /
    • 2002
  • This paper dispicts the vortical flow characteristics over a delta wing using a computational analysis for the purpose of investigating and visualizing the effect of the angle of attack and fee stream velocity on the low-speed delta wing aerodynamics. Computations are applied to the full, 3-dimensional, compressible, Navier-Stokes Equations. In computations, the free stream velocity is changed between 20m/s and 60m/s and the angle of attack of the delta wing is changed between $16^{\circ}\;and\;28^{\circ}$. For the correct prediction of the major features associated with the delta wing vortex flows, various turbulence models are tested. The standard $k-{\varepsilon}$ turbulence model predict well the vertical flows over the delta wing. Computational results are compared with the previous experimental ones. It is found that the present CFD results predict the vortical flow characteristics over the delta wing, and with an increase in the free steam velocity, the leading edge vortex moves outboard and its streangth is increased.

  • PDF

The Scheme for Generate to Active Response Policy in Intrusion Detection System (침입 탐지 도구에서 능동 대응 정책 생성 방안)

  • Lee Jaw-Kwang;Paek Seung-Hyun;Oh Hyung-Geun;Park Eung-Ki;Kim Bong-Han
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.1
    • /
    • pp.151-159
    • /
    • 2006
  • This paper studied active response policy generation scheme in intrusion detection system. We considered seven requirements of intrusion detection system for active response with components as the preceding study We presented the scheme which I can generate signature with a base with integrate one model with NIDS and ADS. We studied detection of the Unknown Attack which was active, and studied scheme for generated to be able to do signature automatically through Unknown Attack detection.

  • PDF