• Title/Summary/Keyword: Attack Dataset

Search Result 65, Processing Time 0.026 seconds

Random Noise Addition for Detecting Adversarially Generated Image Dataset (임의의 잡음 신호 추가를 활용한 적대적으로 생성된 이미지 데이터셋 탐지 방안에 대한 연구)

  • Hwang, Jeonghwan;Yoon, Ji Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.629-635
    • /
    • 2019
  • In Deep Learning models derivative is implemented by error back-propagation which enables the model to learn the error and update parameters. It can find the global (or local) optimal points of parameters even in the complex models taking advantage of a huge improvement in computing power. However, deliberately generated data points can 'fool' models and degrade the performance such as prediction accuracy. Not only these adversarial examples reduce the performance but also these examples are not easily detectable with human's eyes. In this work, we propose the method to detect adversarial datasets with random noise addition. We exploit the fact that when random noise is added, prediction accuracy of non-adversarial dataset remains almost unchanged, but that of adversarial dataset changes. We set attack methods (FGSM, Saliency Map) and noise level (0-19 with max pixel value 255) as independent variables and difference of prediction accuracy when noise was added as dependent variable in a simulation experiment. We have succeeded in extracting the threshold that separates non-adversarial and adversarial dataset. We detected the adversarial dataset using this threshold.

CNN Based Real-Time DNS DDoS Attack Detection System (CNN 기반의 실시간 DNS DDoS 공격 탐지 시스템)

  • Seo, In Hyuk;Lee, Ki-Taek;Yu, Jinhyun;Kim, Seungjoo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.3
    • /
    • pp.135-142
    • /
    • 2017
  • DDoS (Distributed Denial of Service) exhausts the target server's resources using the large number of zombie pc, As a result normal users don't access to server. DDoS Attacks steadly increase by many attacker, and almost target of the attack is critical system such as IT Service Provider, Government Agency, Financial Institution. In this paper, We will introduce the CNN (Convolutional Neural Network) of deep learning based real-time detection system for DNS amplification Attack (DNS DDoS Attack). We use the dataset which is mixed with collected data in the real environment in order to overcome existing research limits that use only the data collected in the experiment environment. Also, we build a deep learning model based on Convolutional Neural Network (CNN) that is used in pattern recognition.

A Margin-based Face Liveness Detection with Behavioral Confirmation

  • Tolendiyev, Gabit;Lim, Hyotaek;Lee, Byung-Gook
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.187-194
    • /
    • 2021
  • This paper presents a margin-based face liveness detection method with behavioral confirmation to prevent spoofing attacks using deep learning techniques. The proposed method provides a possibility to prevent biometric person authentication systems from replay and printed spoofing attacks. For this work, a set of real face images and fake face images was collected and a face liveness detection model is trained on the constructed dataset. Traditional face liveness detection methods exploit the face image covering only the face regions of the human head image. However, outside of this region of interest (ROI) might include useful features such as phone edges and fingers. The proposed face liveness detection method was experimentally tested on the author's own dataset. Collected databases are trained and experimental results show that the trained model distinguishes real face images and fake images correctly.

Explainable analysis of the Relationship between Hypertension with Gas leakages (설명 가능한 인공지능 기술을 활용한 가스누출과 고혈압의 연관 분석)

  • Dashdondov, Khongorzul;Jo, Kyuri;Kim, Mi-Hye
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.55-56
    • /
    • 2022
  • Hypertension is a severe health problem and increases the risk of other health issues, such as heart disease, heart attack, and stroke. In this research, we propose a machine learning-based prediction method for the risk of chronic hypertension. The proposed method consists of four main modules. In the first module, the linear interpolation method fills missing values of the integration of gas and meteorological datasets. In the second module, the OrdinalEncoder-based normalization is followed by the Decision tree algorithm to select important features. The prediction analysis module builds three models based on k-Nearest Neighbors, Decision Tree, and Random Forest to predict hypertension levels. Finally, the features used in the prediction model are explained by the DeepSHAP approach. The proposed method is evaluated by integrating the Korean meteorological agency dataset, natural gas leakage dataset, and Korean National Health and Nutrition Examination Survey dataset. The experimental results showed important global features for the hypertension of the entire population and local components for particular patients. Based on the local explanation results for a randomly selected 65-year-old male, the effect of hypertension increased from 0.694 to 1.249 when age increased by 0.37 and gas loss increased by 0.17. Therefore, it is concluded that gas loss is the cause of high blood pressure.

Classification of Malware Families Using Hybrid Datasets (하이브리드 데이터셋을 이용한 악성코드 패밀리 분류)

  • Seo-Woo Choi;Myeong-Jin Han;Yeon-Ji Lee;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1067-1076
    • /
    • 2023
  • Recently, as variant malware has increased, the scale of cyber hacking incidents is expanding. To respond to intelligent cyberhacking attack, machine learning-based research is actively underway to effectively classify malware families. However, existing classification models have problems where performance deteriorates when the dataset is obfuscated or sparse. In this paper, we propose a hybrid dataset that combines features extracted from ASM files and BYTES files, and evaluate classification performance using FNN. As a result of the experiment, the proposed method showed performance improvement of about 4% compared to a single dataset, and in particular, performance improvement of about 30% for rare families.

Machine Learning Based Hybrid Approach to Detect Intrusion in Cyber Communication

  • Neha Pathak;Bobby Sharma
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.190-194
    • /
    • 2023
  • By looking the importance of communication, data delivery and access in various sectors including governmental, business and individual for any kind of data, it becomes mandatory to identify faults and flaws during cyber communication. To protect personal, governmental and business data from being misused from numerous advanced attacks, there is the need of cyber security. The information security provides massive protection to both the host machine as well as network. The learning methods are used for analyzing as well as preventing various attacks. Machine learning is one of the branch of Artificial Intelligence that plays a potential learning techniques to detect the cyber-attacks. In the proposed methodology, the Decision Tree (DT) which is also a kind of supervised learning model, is combined with the different cross-validation method to determine the accuracy and the execution time to identify the cyber-attacks from a very recent dataset of different network attack activities of network traffic in the UNSW-NB15 dataset. It is a hybrid method in which different types of attributes including Gini Index and Entropy of DT model has been implemented separately to identify the most accurate procedure to detect intrusion with respect to the execution time. The different DT methodologies including DT using Gini Index, DT using train-split method and DT using information entropy along with their respective subdivision such as using K-Fold validation, using Stratified K-Fold validation are implemented.

Heart Attack Prediction using Neural Network and Different Online Learning Methods

  • Antar, Rayana Khaled;ALotaibi, Shouq Talal;AlGhamdi, Manal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.77-88
    • /
    • 2021
  • Heart Failure represents a critical pathological case that is challenging to predict and discover at an early age, with a notable increase in morbidity and mortality. Machine Learning and Neural Network techniques play a crucial role in predicting heart attacks, diseases and more. These techniques give valuable perspectives for clinicians who may then adjust their diagnosis for each individual patient. This paper evaluated neural network models for heart attacks predictions. Several online learning methods were investigated to automatically and accurately predict heart attacks. The UCI dataset was used in this work to train and evaluate First Order and Second Order Online Learning methods; namely Backpropagation, Delta bar Delta, Levenberg Marquardt and QuickProp learning methods. An optimizer technique was also used to minimize the random noise in the database. A regularization concept was employed to further improve the generalization of the model. Results show that a three layers' NN model with a Backpropagation algorithm and Nadam optimizer achieved a promising accuracy for the heart attach prediction tasks.

A DDoS attack Mitigation in IoT Communications Using Machine Learning

  • Hailye Tekleselase
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.170-178
    • /
    • 2024
  • Through the growth of the fifth-generation networks and artificial intelligence technologies, new threats and challenges have appeared to wireless communication system, especially in cybersecurity. And IoT networks are gradually attractive stages for introduction of DDoS attacks due to integral frailer security and resource-constrained nature of IoT devices. This paper emphases on detecting DDoS attack in wireless networks by categorizing inward network packets on the transport layer as either "abnormal" or "normal" using the integration of machine learning algorithms knowledge-based system. In this paper, deep learning algorithms and CNN were autonomously trained for mitigating DDoS attacks. This paper lays importance on misuse based DDOS attacks which comprise TCP SYN-Flood and ICMP flood. The researcher uses CICIDS2017 and NSL-KDD dataset in training and testing the algorithms (model) while the experimentation phase. accuracy score is used to measure the classification performance of the four algorithms. the results display that the 99.93 performance is recorded.

CRF Based Intrusion Detection System using Genetic Search Feature Selection for NSSA

  • Azhagiri M;Rajesh A;Rajesh P;Gowtham Sethupathi M
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.131-140
    • /
    • 2023
  • Network security situational awareness systems helps in better managing the security concerns of a network, by monitoring for any anomalies in the network connections and recommending remedial actions upon detecting an attack. An Intrusion Detection System helps in identifying the security concerns of a network, by monitoring for any anomalies in the network connections. We have proposed a CRF based IDS system using genetic search feature selection algorithm for network security situational awareness to detect any anomalies in the network. The conditional random fields being discriminative models are capable of directly modeling the conditional probabilities rather than joint probabilities there by achieving better classification accuracy. The genetic search feature selection algorithm is capable of identifying the optimal subset among the features based on the best population of features associated with the target class. The proposed system, when trained and tested on the bench mark NSL-KDD dataset exhibited higher accuracy in identifying an attack and also classifying the attack category.

Techniques for Improving Host-based Anomaly Detection Performance using Attack Event Types and Occurrence Frequencies

  • Juyeon Lee;Daeseon Choi;Seung-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.89-101
    • /
    • 2023
  • In order to prevent damages caused by cyber-attacks on nations, businesses, and other entities, anomaly detection techniques for early detection of attackers have been consistently researched. Real-time reduction and false positive reduction are essential to promptly prevent external or internal intrusion attacks. In this study, we hypothesized that the type and frequency of attack events would influence the improvement of anomaly detection true positive rates and reduction of false positive rates. To validate this hypothesis, we utilized the 2015 login log dataset from the Los Alamos National Laboratory. Applying the preprocessed data to representative anomaly detection algorithms, we confirmed that using characteristics that simultaneously consider the type and frequency of attack events is highly effective in reducing false positives and execution time for anomaly detection.