• Title/Summary/Keyword: Attached Bacteria

Search Result 155, Processing Time 0.021 seconds

Application of the CRISPR/Cas System for Point-of-care Diagnosis of Cattle Disease (현장에서 가축질병을 진단하기 위한 CRISPR/Cas 시스템의 활용)

  • Lee, Wonhee;Lee, Yoonseok
    • Journal of Life Science
    • /
    • v.30 no.3
    • /
    • pp.313-319
    • /
    • 2020
  • Recently, cattle epidemic diseases are caused by a pathogen such as a virus or bacterium. Such diseases can spread through various pathways, such as feed intake, respiration, and contact between livestock. Diagnosis based on the ELISA (Enzyme-linked immunosorbent assay) and PCR (Polymerase chain reaction) methods has limitations because these traditional diagnostic methods are time consuming assays that require multiple steps and dedicated equipment. In this review, we propose the use of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Cas system based on DNA and RNA levels for early point-of-care diagnosis in cattle. In the CRISPR/Cas system, Cas effectors are classified into two classes and six subtypes. The Cas effectors included in class 2 are typically Cas9 in type II, Cas12 in type V (Cas12a and Cas12b) and Cas13 in type VI (Cas13a and Cas13b). The CRISPR/Cas system uses reporter molecules that are attached to the ssDNA strands. When the Cas enzyme cuts the ssDNA, these reporters either fluoresce or change color, indicating the presence of a specific disease marker. There are several steps in the development of a CRISPR/Cas system. The first is to select the Cas enzyme depending on DNA or RNA from pathogens (viruses or bacteria). Based on that, the next step is to integrate the optimal amplification, transducing method, and signal reporter. The CRISPR/Cas system is a powerful diagnostic tool using a gene-editing method, which is faster, better, and cheaper than traditional methods. This system could be used for early diagnosis of epidemic cattle diseases and help to control their spread.

Quality Enhancement of Kimchi by Pre-Treatment with Slightly Acidic Electrolyzed Water and Mild Heating during Storage (미산성 차아염소산수와 미가열 병용 처리를 통한 원료 전처리 및 김치 저장 중 품질 확보)

  • Park, Joong-Hyun;Kim, Ha-Na;Oh, Deog-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.269-276
    • /
    • 2016
  • This study was conducted to determine the inactivation effects of slightly acidic electrolyzed water (SAEW) on microorganisms attached to salted Chinese cabbage and food materials of kimchi, such as slice radish and green onion. In addition, changes in microbial and physicochemical quality of manufactured kimchi during storage at $4^{\circ}C$ for 4 weeks were investigated. Compared to the untreated control with tap water, total bacterial counts (TBC) of Chinese cabbage, slice radish, and green onion were reduced by 1.75, 1.68, and 1.03 log CFU/g at dipping times of 20 min, 5 min, and 10 min, respectively, upon treatment with 30 ppm SAEW at $40^{\circ}C$. Effect of microbial inhibition was higher in salted Chinese cabbage brined in 10% salt (w/v) of 30 pm SAEW at $40^{\circ}C$ than in untreated control with tap water, as indicated by 1.00 log CFU/g reduction. TBC of kimchi manufactured with materials treated with 30 ppm SAEW at $40^{\circ}C$ was not significantly affected compared to untreated control, although coliforms were remarkably reduced compared to the untreated control. At the beginning of storage (1 weeks), TBC and lactic acid bacteria (LAB) counts increased by approximately 9 and 7.66~8.18 log CFU/g, respectively, and coliforms were completely eliminated. The pH and acidity of kimchi at 2 weeks were 4.34~4.49 and 0.55~0.66%, respectively, and then slowly decreased. The texture (firmness) of kimchi decreased with storage time, but the difference was not significant. This combined treatment might be considered as a potentially beneficial sanitizing method for improving the quality and safety of kimchi.

THE EFFECTS OF CITRIC ACID TREATED ROOT SURFACES ON THE ATTACHMENT AND PROLIFERATION OF PERIDONTAL LIGAMENT CELLS (치근면 구연산 도포가 치주인대세포의 부착과 전개에 미치는 영향)

  • Lee, Sang-Gu;Suh, Jo-Young;Park, Joon-Bong
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.77-96
    • /
    • 1993
  • This in vitro study was undertaken to observe whether citric acid application aids the attachment and proliferation of human periodontal ligament cells to the root surfaces of periodontally diseased teeth. The roots were prepared so that the comparison could be made among the control healthy root surface, citric acid demineralized and non-demineralized root planted surfaces. Prior to the cell attachment experiment, each groups were prepared for scanning electron microscopic (SEM) examinations of root surface morphology, All specimens were fixed with phosphate buffered glutaraldehydes, postfixed with phosphate buffered osmium tetraoxide and stained with phosphate buffered tannic acid. dehydrated in ethanol, critical point dried, sputter coated with gold and examined under the SEM. In the cell attachement experiment, human cultured periodontal ligament cells at concentration to $4.5{\times}\;10^4\;cells/ml$ were seeded in each culture well which contained prepared roots and incubated for 30min 1, 2, 6, 12 and 24 hours at 37, 5% $CO_2$air incubator. Than the specimens were prepared for SEM examination using, the same methods as described above. In the cell proliferation experiment, $5{\times}\;10^4\;cells/ml$ cells were seeded incubated with the specimens for 6 hours. Then, all of the specimens were moved into fresh culture well and incubated for 24, 48, and 72 hours. The cell counting was done after trypsinization, under light microscope. The results were as follows. When viewed the surface morphology prior to the cell attachment, the non acid treated root planed surface displayed scaling striation and occasional bacteria and calculus. The citric acid treated specimens displayed little debris on the surface and funnel shaped orifices of dentinal tubules. There were no apparent differences in the morphology of cells attached to the control and experiment groups. However, in initial attachement, there was a slight more enhanced appearance in attachment in citric acid treated groups than other root surfaces. After 6 hours of incubation, most of the cells initiated the alteration of cell morphology from ovoid to spindle shapes. After 24 hours of incubation, most of the cells displayed proliferated appearance and connected with each other via numerous processes. In the cell proliferation experiments, there were statistically significant increased number of cells in citic acid treated groups than other groups.

  • PDF

가금에서 분리된 유산균의 생리적 특성 및 급여효과

  • 김상호
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2002.11a
    • /
    • pp.64-84
    • /
    • 2002
  • These studies were conducted to evaluate the Properties of lactic acid Producing bacteria(LAB), isolated from broiler and laying hens cecum and select the optimum strains to improve the performance, environment of poultry house, immunity, and intestinal microflora of broiler and laying hens. In experiment I , 23 LAB strains were isolated from broiler and laying hens cecum as a colony form. Six strains were selected by acid tolerance, bile salt tolerance, viability, enzyme release, antagonism, and antibiotics susceptibility. In Experiment II, selected LABs from Ex. 1 were conducted to investigate the effects of feeding various Lactobacillus on performance, nutrients digestibility, intestinal microflora, villi development and observation of epithelium surface, blood chemicals and fecal noxious gas of broiler chicks. One thousand eighty one day old broiler chicks were fed into Lactobacillus crispatus avibrol(LCB), Lactobacillus reuteri avibro2(LRB), Lactobacillus crispatus avihen1(LCH), and Lactobacillus vaginalis avihen2(LVH) at the level of 10$^4$ and 10$\^$7/cfu/g diet. Weight gam of chicks fed Lactobacillus tended to increase from the first week and was higher from 50 to 100g in Lactobacillus treatments than control. Feed intake and feed conversion were not statistically different of all treatments. Dry Matter digestibility of Lactobacillus treatments was prone to improve compared to that of control, but was not significantly different. Protein and Ca digestibility were also tended to improve in Lactobacillus treatments relative that of control. Lactobacillus treatments showed improved tendency in crude ash and fat compared to those of control, whereas phosphorus digestibility was not consistency. Nutrients digestibilities of bird fed LCH were superior to those of other treatments, It showed significantly higher in Ca and P digestibility than control(P〈0.05). Total Lactobacillus spp. of birds fed various Lactobacillus was significantly higher in illeum for five weeks(P〈0.05), but was not different at cecum. Yeast was thought to be not completely attached to intestinal lumen for one week. However, total number of yeast was significantly increased in cecum and illeum of three weeks old chicks (P〈0.05). The number of anaerobes exhibited to tendency the increase in Lactobacillus treatments from one week old of age at both ileum and cecum.

  • PDF

Changes of Bacterial Diversity Depend on the Spoilage of Fresh Vegetables (신선 채소류의 부패에 따른 세균의 다양성 변화 및 세균에 의한 채소 부패 조사)

  • Lee, Dong-Hwan;Ryu, Jung-El;Park, So-Yeon;Roh, Eun-Jung;Oh, Chang-Sik;Jung, Kyu-Suk;Yoon, Jong-Chul;Heu, Sung-Gi
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • Almost 10~30% of vegetables were discarded by the spoilage from farms to tables. After harvest, vegetables are often spoiled by a wide variety of microorganisms including many bacterial and fungal species. This investigation was conducted to extent the knowledge of relationship the spoilage of vegetables and the diversity of microbes. The total aerobic bacterial numbers in fresh lettuce, perilla leaf, and chicory were $2.6{\sim}2.7{\times}10^6$, $4.6{\times}10^5$, $1.2{\times}10^6\;CFU/g$ of fresh weight, respectively. The most common bacterial species were Pseudomonas spp., Alysiella spp., and Burkholderia spp., and other 18 more genera were involved in. After one week of incubation of those vegetables at $28^{\circ}C$, the microbial diversity had been changed. The total aerobic bacterial numbers increased to $1.1{\sim}4.6{\times}10^8$, $4.9{\times}10^7$, and $7.6{\times}10^8\;CFU/g$ of fresh weight for lettuce, perilla leaf, and chicory that is about $10^2$ times increased bacterial numbers than that before spoilage. However, the diversity of microbes isolated had been simplified and fewer bacterial species had been isolated. The most bacterial population (~48%) was taken up by Pseudomonas spp., and followed by Arthrobacter spp. and Bacillus spp. The spoilage activity of individual bacterial isolates had been tested using axenic lettuce plants. Among tested isolates, Pseudomonas fluorescence and Pantoea agglomerans caused severe spoilage on lettuce.