• Title/Summary/Keyword: Atomic force microscopy (AFM)

Search Result 782, Processing Time 0.023 seconds

Nanoscale Probing of Switching Behaviors of Pt Nanodisk on STO Substrates with Conductive Atomic Force Microscopy

  • Lee, Hyunsoo;Kim, Haeri;Van, Trong Nghia;Kim, Dong Wook;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.597-597
    • /
    • 2013
  • The resistive switching behaviors of Pt nanodisk on Nb-doped SrTiO3 single-crystal have been studied with conductive atomic force microscopy in ultra-high vacuum. The nanometer sizes of Pt disks were formed by using self-assembled patterns of silica nanospheres on Nb-doped SrTiO3 single-crystal semiconductor film using the Langmuir-Blodgett, followed by the metal deposition with e-beam evaporation. The conductance images shows the spatial mapping of the current flowing from the TiN coated AFM probe to Pt nanodisk surface on Nb:STO single-crystal substrate, that was simultaneously obtained with topography. The bipolar resistive switching behaviors of Pt nanodisk on Nb:STO single-crystal junctions was observed. By measuring the current-voltage spectroscopy after the forming process, we found that switching behavior depends on the charging and discharging of interface trap state that exhibit the high resistive state (HRS) and low resistive state (LRS), respectively. The results suggest that the bipolar resistive switching of Pt/Nb:STO single-crystal junctions can be performed without the electrochemical redox reaction between tip and sample with the potential application of nanometer scale resistive switching devices.

  • PDF

Nanoparticle Size of $TiO_2$ Thin-Films Fabricated by Novel Method(IV) (새로운 방식에 외해 제작된 $TiO_2$ 박막의 나노입자크기(IV))

  • Moon, Jeong-Oh;Jeong, Jae-Hoon;Kim, Kang-Eun;Moon, Byung-Kee;Son, Se-Mo;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.760-763
    • /
    • 2002
  • Nanoparticle size of Titanium dioxide thin films was prepared by novel method. Particle size and surface structure of $TiO_2$ thin films were investigated by atomic force microscopy(AFM), scanning electron microscopy(SEM). All thin films process were prepared at room temperature. Particle size was reduced from 100 to 30nm with increasing amount of $Ti[OCH(CH_3)_2]_4$ observed by AFM images. All thin films were irradiated for 5 minutes by white light. Increasing the annealing temperature, particles size was increased. In the $TiO_2$(40%) thin films was annealed at $300^{\circ}C$ for 30minutes, the particle size was about 10nm.

  • PDF

Investigation on Age-hardening characteristic of thixo and rheocast by using Nano/Micro-probe Technology (나노/마이크로 프로브 기술을 통한 틱소/레오 캐스트의 시효경화 특성 조사)

  • Cho, S.H.;Lee, C.S.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.322-325
    • /
    • 2006
  • The nano/microstructure and mechanical properties of the eutectic regions in thixo and rheo cast A356 alloy parts were investigated using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM).Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers, however Si particles of network in eutectic region was formed quickly with aging time increase in thixo-cast. The aging responses of the eutectic regions in both the thixo and rheo cast A356 alloys aged at $150^{\circ}C$ for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. Both Vickers hardness ($H_V$) and indentation ($H_{IT}$) test results showed almost the same trend of aging curves, the peak was obtained at the same aging time of 10 h.

  • PDF

Analysis of Contact Resonance Frequency Characteristics for Cantilever of Ultrasonic-AFM Using Finite Element Method (유한요소 해석을 이용한 초음파원자현미경 캔틸레버의 접촉 공진주파수 특성 분석)

  • Lee, Joo Min;Han, You Ha;Kwak, Dong Ryul;Park, Ik Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.478-484
    • /
    • 2014
  • Ultrasonic atomic force microscopy(Ultrasonic-AFM) can be used to obtain images of the elastic properties of a subsurface and to evaluate the elastic properties by measuring the contact resonance frequency. When a tip is in contact with the sample, it is necessary to understand the cantilever behavior and the tip-sample interaction for the quantitative and reliable analysis. Therefore, precise analysis models that can accurately simulate the tip-sample contact are required; these can serve as good references for predicting the contact resonance frequency. In this study, modal analyses of the first four modes were performed to calculate the contact resonance frequency by using a spring model, and the deformed shapes of the cantilever were visualized at each mode. We presented the contact characteristics of the cantilever with a variety of contact conditions by applying the contact area, contact material thickness, and material properties as the parameters for the FEM analysis.

Performance of Organic light-emitting diode by various surface treatments of indium tin oxide (Indium tin oxide 기판의 표면처리에 따른 유기 발광다이오드의 특성)

  • Kim, Sun-Hyuk;Han, Jeong-Whan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.9
    • /
    • pp.1-10
    • /
    • 2002
  • We have done various treatments of indium tin oxide (ITO) surface for organic light-emitting diodes (OLEDs), and investigated the surface states by different surface treatments using atomic force microscopy (AFM) and Auger electron spectroscopy (AES). We have fabricated OLEDs deposited by ultra-high vacuum molecular beam deposition system and studied the characteristics of the OLEDs. We have observed the dramatical improvement of the performance of OLEDs fabricated on ITO substrates treated by $O_2$ plasma treatment reduces the carbon comtamination of ITO surfaces and increases the work function of ITO.

Study on the chemical environment for conformational change of i-motif DNA by atomic force microscopy cantilever (AFM 캔틸레버를 이용한 i-motif DNA의 구조 변화에 미치는 화학적 환경에 대한 연구)

  • Jung, Hwi-Hun;Park, Jin-Sung;Yang, Jae-Moon;Lee, Sang-Woo;Eom, Kil-Ho;Kwon, Tae-Yun;Yoon, Dae-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.214-220
    • /
    • 2010
  • Three-dimensional(3D) structure of specific DNA can be changed between two conformations under an external environmental transition such as pH and salt concentration variations. We have experimentally observed the conformational transitions of i-motif DNA using AFM cantilever bioassay. It is shown that pH change of a solvent induces the bending defleciton change of a cantilever functionalized by i-motif DNA. This indicates that cantilever bioassay enables the label-free detection of DNA structural changes upon pH change. It is implied that cantilever bioassay can be a de novo route to quantitatively understand the conformational transitions of biological molecules under environmental changes.

SAXS and AFM Study on Porous Silicon Prepared by Anodic Etching in HF-based Solution (SAXS와 AFM에 의한 HF-용액내 양극 에칭에 의해 제조된 기공성 실리콘의 구조연구)

  • Kim, Eu-gene;Kim, Hwa-Joong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1218-1223
    • /
    • 2004
  • Porous silicon materials have been shown to have bright prospects for applications in light emitting, solar cell, as well as light- and chemical-sensing devices. In this report, structures of porous silicon prepared by anodic etching in HF-based solution with various etching times were studied in detail by Atomic Force Microscopy and Small Angle X -ray Scattering technique using the high energy beam line at Pohang Light Source in Korea. The results showed the coexistence of the various pores with nanometer and submicrometer scales. For nanameter size pores, the mixed ones with two different shapes were identified: the larger ones in cylindrical shape and the smaller ones in spherical shape. Volume fractions of the cylindrical and the spherical pores were about equal and remained unchanged at all etching times investigated. On the whole uniform values of the specific surface area and of the size parameters of the pores were observed except for the larger specific surface area for the sample with the short etching time. The results implies that etching process causes the inner surfaces to become smoother while new pores are being generated. In all SAXS data at large Q vectors, Porod slope of -4 was observed, which supports the fact that the pores have smooth surfaces.

Vibration Analysis of AFM Microcantilevers Using an Equivalent Stiffness Element Model (등가강성요소 모델을 이용한 AFM 마이크로캔틸레버의 진동해석)

  • Han, Dong Hee;Kim, Il Kwang;Lee, Soo Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.461-466
    • /
    • 2015
  • Atomic force microscopy (AFM) is powerful tool for determining properties of samples based on interactions between the sample surface and an approaching probe tip. In this study, we modeled the interactions between the sample and the tip of the AFM microcantilever as a single nonlinear spring with an equivalent stiffness element and simulated the dynamic behaviors of the AFM microcantilevers using the finite element method (FEM) and ANSYS software. With the simulation results, we analyzed the complex dynamic responses of the AFM cantilever using proper orthogonal decomposition (POD). In addition, we compared the simulation and experimental results using the same method. Consequently, we suggest an effective method to express the interaction between the tip and sample, and we confirm that the influence of the higher order model due to the interaction between the tip and sample is increased.

Quantitative Lateral Force Calibration of V-shaped AFM Cantilever (V 형상을 가지는 원자현미경 Cantilever의 정량적 마찰력 교정)

  • Lee, Huijun;Kim, Kwanghee;Kim, Hyuntae;Kang, Boram;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.203-211
    • /
    • 2012
  • Atomic force microscopy (AFM) has been used as a tool, not only for imaging surfaces, but also for measuring surface forces and mechanical properties at the nano-scale. Force calibration is crucial for quantitatively measuring the forces that act between the AFM probe of a force sensing cantilever and a sample. In this work, the lateral force calibrations of a V-shaped cantilever were performed using the finite element method, multiple pivot loading, and thermal noise methods. As a result, it was shown that the multiple pivot loading method was appropriate for the lateral force calibration of a V-shaped cantilever. Further, through crosschecking of the abovementioned methods, it was concluded that the thermal noise method could be used for determining the lateral spring constants as long as the lateral deflection sensitivity was accurately determined. To obtain the lateral deflection sensitivity from the sticking portion of the friction loop, the contact stiffness should be taken into account.