• Title/Summary/Keyword: Atomic Emission Spectroscopy

Search Result 171, Processing Time 0.026 seconds

Excitation and Emission Properties of Adsorbed U(VI) on Amorphous Silica Surface

  • Jung, Euo Chang;Kim, Tae-Hyeong;Kim, Hee-Kyung;Cho, Hye-Ryun;Cha, Wansik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.497-508
    • /
    • 2020
  • In the geochemical field, the chemical speciation of hexavalent uranium (U(VI)) has been widely investigated by performing measurements to determine its luminescence properties, namely the excitation, emission, and lifetime. Of these properties, the excitation has been relatively overlooked in most time-resolved laser fluorescence spectroscopy (TRLFS) studies. In this study, TRLFS and continuous-wave excitation-emission matrix spectroscopy are adopted to characterize the excitation properties of U(VI) surface species that interact with amorphous silica. The luminescence spectra of U(VI) measured from a silica suspension and silica sediment showed very similar spectral shapes with similar lifetime values. In contrast, the excitation spectra of U(VI) measured from these samples were significantly different. The results show that distinctive excitation maxima appeared at approximately 220 and 280 nm for the silica suspension and silica sediment, respectively.

A Study of the Etched ZnO Thin Films Surface by Reactive Ion in the Cl2/BCl3/Ar Plasma (Cl2/BCl3/Ar 플라즈마에서 반응성 이온들에 의해 식각된 ZnO 박막 표면 연구)

  • Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.747-751
    • /
    • 2010
  • In the study, the characteristics of the etched Zinc oxide (ZnO) thin films surface, the etch rate of ZnO thin film in $Cl_2/BCl_3/Ar$ plasma was investigated. The maximum ZnO etch rate of 53 nm/min was obtained for $Cl_2/BCl_3/Ar$=3:16:4 sccm gas mixture. According to the x-ray diffraction (XRD) and atomic force microscopy (AFM), the etched ZnO thin film was investigated to the chemical reaction of the ZnO surface in $Cl_2/BCl_3/Ar$ plasma. The field emission auger electron spectroscopy (FE-AES) analysis showed an elemental analysis from the etched surfaces. According to the etching time, the ZnO thin film of etched was obtained to The AES depth-profile analysis. We used to atomic force microscopy to determine the roughness of the surface. So, the root mean square of ZnO thin film was 17.02 in $Cl_2/BCl_3/Ar$ plasma. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the plasmas.

Roll-to-Roll Barrier Coatings on PET Film by Using a Closed Drift Magnetron Plasma Enhanced Chemical Vapor Deposition

  • Lee, Seunghun;Kim, Jong-Kuk;Kim, Do-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.124-125
    • /
    • 2012
  • Korea institute of materials science (KIMS) use a linear deposition source called as a closed drift linear plasma source (CDLPS) as well as dual magnetron sputtering (DMS) to deposit SiOxCyHz films in $HMDSO/O_2$ plasma. The CDLPS generates linear plasma using closed drifting electrons and can reduce device degradations due to energetic ion bombardments on organic devices such as organic photovoltaic and organic light emission diode by controlling an ion energy. The deposited films are investigated by Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Optical emission spectroscopy (OES) is used to measure relative radical populations of dissociation and recombination products such as H, CH, and CO in plasma. And SiOx film is applied to a barrier film on organic photovoltaic devices.

  • PDF

Thin Film Characterization on Refractive Index of PECVD SiO2 Thin Films

  • Woo Hyuck Kong;In Cheon Yoon;Seung Jae Lee;Yun Jeong Choi;Sang Jeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.35-39
    • /
    • 2023
  • Silicon oxide thin films have been deposited by plasma-enhanced chemical vapor deposition in SiH4 and N2O plasma along the variation of the gas flow ratio. Optical emission spectroscopy was employed to monitor the plasma and ellipsometry was employed to obtain refractive index of the deposited thin film. The atomic ratio of Si, O, and N in the film was obtained using XPS depth profiling. Fourier Transform Infrared Spectroscopy was used to analyze structures of the films. RI decreased with the increase in N2O/SiH4 gas flow ratio. We noticed the increase in the Si-O-Si bond angles as the N2O/SiH4 gas flow ratio increased, according to the analysis of the Si-O-Si stretching peak between 950 and 1,150 cm-1 in the wavenumber. We observed a correlation between the optical emission intensity ratio of (ISi+ISiH)/IO. The OES intensity ratio is also related with the measured refractive index and chemical composition ratio of the deposited thin film. Therefore, we report the added value of OES data analysis from the plasma related to the thin film characteristics in the PECVD process.

  • PDF

Qualitative Analysis of the Component Materials of Nuclear Power Plant Using Time-Resolved Laser Induced Breakdown Spectroscopy (시간분해 레이저 유도 파열 분광분석에 의한 원자력발전소 계통재질의 성분 정성분석)

  • Chung, Kun-Ho;Cho, Yeong-Hyun;Lee, Wanno;Choi, Geun-Sik;Lee, Chang-Woo
    • Analytical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.416-422
    • /
    • 2004
  • Time-resolved laser induced breakdown spectroscopy (TRELIBS) has been developed and applied to the qualitative analysis of the component materials of nuclear power plant. The alloy samples used in this work were carbon steels (A106 Gr. B; A336 P11; A335 P22), stainless steels (type 304; type 316) and inconel alloys (Inconel 600; Inconel 690; Inconel 800). Carbon steels can be individually distinguished by the intensity ratio of chromium to iron and molybdenum to iron emission lines observed at the wavelength raging from 485 to 575 nm. Type 316 stainless steel can be easily differentiated from type 304 by identification of the molybdenum emission lines at an emission wavelength ranging from 485 to 575 nm: type 304 does not give any molybdenum emission lines, but type 316 does. The inconel alloys can be individually distinguished by the intensity ratio of Cr/Fe and Ni/Fe emission lines at the wavelength raging from 420 to 510 nm. TRELIBS has been proved to be a powerful analytical technique for direct analysis of alloys due to its non-destructivity and simplicity.

Polymer (Polydimethylsiloxane (pdms)) Microchip Plasma with Electrothermal Vaporization for the Determination of Metal Ions in Aqueous Solution

  • Ryu, Won-Kyung;Kim, Dong-Hoon;Lim, H.B.;Houk, R.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.553-556
    • /
    • 2007
  • We previously reported a 27.12 MHz inductively coupled plasma source at atmospheric pressure for atomic emission spectrometry based on polymer microchip plasma technology. For the PDMS polymer microchip plasma, molecular emission was observed, but no metallic detection was done. In this experiment, a lab-made electrothermal vaporizer (ETV) with tantalum coil was connected to the microchip plasma for aqueous sample introduction to detect metal ions. The electrode geometry of this microchip plasma was redesigned for better stability and easy monitoring of emission. The plasma was operated at an rf power of 30-70 W using argon gas at 300 mL/min. Gas kinetic temperatures between 800-3200 K were obtained by measuring OH emission band. Limits of detection of about 20 ng/mL, 96.1 ng/mL, and 1.01 μ g/mL were obtained for alkali metals, Zn, and Pb, respectively, when 10 μ L samples in 0.1% nitric acid were injected into the ETV.

Study on the Preparation of Alumina Powders used os a Rubber Filler with a Microwave Extraction System (마이크로파에 의한 고무용 충전제로서의 Alumina Powder의 제조에 관한 연구)

  • Park, Chan-Young;Hwang, Eun-Hee;Han, Seong-Kee
    • Elastomers and Composites
    • /
    • v.33 no.3
    • /
    • pp.201-209
    • /
    • 1998
  • Alumina powders used as a filler in rubber compounding was extracted from kaolin in $H_2SO_4$ solution employing conventional thermal and microwave energy resources. Maximum degrees of alumina extraction from kaolin were 72.8% at $80^{\circ}C$, 1M $H_2SO_4$, and 180min in the conventional thermal extraction process and were 99.0% at $90^{\circ}C$, 1M $H_2SO_4$,, and 60min in the microwave extraction one, respectively. The samples synthesized in both processes were analyzed by means of TG/DTA, XRD, SEM, Atomic Emission Spectroscopy, and BET method. Studies are presently under way to unravel the basic interaction mechanisms between microwave and alumina power for high rates of alumina extraction from kaolin in the microwave ex-traction process.

  • PDF

Synthesis and Characterization of Titania-Partially-Stabilized Zirconia by Ultrasonic Spray Pyrolysis (초음파분무열분해법에 의한 TPSZ의 합성 및 특성)

  • Seo, Ki-Lyong;Ri, Chang-Seop
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.6
    • /
    • pp.592-599
    • /
    • 2000
  • The fine particles of binary ceramic composite of titania-partially-stabilized zirconia(TPSZ) were synthesized by ultrasonic spray pyrolysis at the various temperatures, compositions and concentrations and the effects of process factors for synthesis on the characteristics of fine particles were discussed. The starting salt solutions were prepared to have the ionic concentrations of 0.025~0.1 M aqueous solutions. The fine particles were prepared to have the compositions of 90~97.5 wt% of $ZrO_2$ and 2.5~10 wt% of $TiO_2$. The temperatures for particle synthesis were regulated to be 400~550$^{\circ}C$ as a drying zone, 800~1100$^{\circ}C$ as a pyrolysis zone. The produced fine particles were collected by a wet process and analyzed to investigate characteristic properties after being dried. The compositions of ceramic fine particles were determined by Inductively Coupled Plasma-Atomic Emission Spectroscopy(ICP-AES) technique and phases, morphologies and particle sizes of those were investigated by Raman Spectroscopy, X-ray diffraction(XRD), Scanning Electron Microscopy(SEM), Transmission Electron Microscopy(TEM) and Particle Size Analyzer(PSA) techniques.

  • PDF

Elemental analysis of rice using laser-ablation sampling: Determination of rice-polishing degree

  • Yonghoon Lee
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.12-24
    • /
    • 2024
  • In this study, laser-induced breakdown spectroscopy (LIBS) was used to estimate the degree of rice polishing. As-threshed rice seeds were dehusked and polished for different times, and the resulting grains were analyzed using LIBS. Various atomic, ionic, and molecular emissions were identified in the LIBS spectra. Their correlation with the amount of polished-off matter was investigated. Na I and Rb I emission line intensities showed linear sensitivity in the widest range of polished-off-matter amount. Thus, univariate models based on those lines were developed to predict the weight percent of polished-off matter and showed 3-5 % accuracy performances. Partial least squares-regression (PLS-R) was also applied to develop a multivariate model using Si I, Mg I, Ca I, Na I, K I, and Rb I emission lines. It outperformed the univariate models in prediction accuracy (2 %). Our results suggest that LIBS can be a reliable tool for authenticating the degree of rice polishing, which is closed related to nutrition, shelf life, appearance, and commercial value of rice products.