• Title/Summary/Keyword: Atomic Clock

Search Result 30, Processing Time 0.023 seconds

Improvement of Loran-C Timing Accuracy by Inland Differential ASF Measurements (내륙 differential ASF 측정을 통한 Loran-C 시각 정확도 향상)

  • Lee, Chang-Bok;Hwang, Sang-Wook;Lee, Jong-Koo;Lee, Young-Kyu;Lee, Sang-Jeong;Yang, Sung-hoon
    • Journal of Navigation and Port Research
    • /
    • v.40 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • In this study we measured a differential ASF to improve the accuracy of time synchronization with the signal transmitted from Pohang 9930M Loran station. We obtained the differential ASF which is calculated from a difference of the TOA measurements between KRISS and Chungnam National University(CNU), and KRISS and National Maritime PNT Office respectively. The TOA measurement at KRISS was measured by UTC(KRIS) reference clock and other sites were measured by atomic clocks respectively. The time variations of differential ASF measurements at CNU and National Maritime PNT Office were within $0.1{\mu}s$ and $0.05{\mu}s$ respectively. And we found the time variations of $0.1{\mu}s$ depending on the surrounding radio-wave environments from the differential ASF measurements of 60 minute moving averages. We can improve the accuracy of time synchronization of the local clock to within 10 ns by compensating the differential ASF through removing the common component of ASF. And we measured the absolute ASF between the Pohang transmit station and KRISS by the measurement technique of absolute time delay using a cesium atomic clock. The average ASF between two points is about $3.5{\mu}s$.

GPS Satellite Fault Detection Using Atomic Clock (원자 시계를 이용한 GPS 위성 고장 판단)

  • Kim, Jeong-Won;Son, Seok-Bo;Hwang, Dong-Hwan;Lee, Sang-Jeong;Park, Chan-Sik;Suh, Sang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2573-2575
    • /
    • 2005
  • 본 논문에서는 원자 시계를 이용한 위성 시계 고장 판단 기법을 제안한다. GPS 측정치 중 위성 시계 오차 성분을 제외한 위성 궤도 오차, 이온층 지연 오차, 대류층 지연 오차, 수신기 시계 오차를 제거하여 위성 시계 오차에 의한 영향만을 검사하도록 한다. 특히 TCXO와 같은 일반적인 수신기 시계를 사용할 경우 정확한 수신기 시계 오차 크기를 추정하기 어렵기 때문에 원자 시계와 같은 정밀 신호 발생기를 이용하여 수신기 시계 오차에 의한 영향을 제거하는 방법을 제시한다. 제시한 방법은 실제 위성 시계에 이상이 발생 했을 때 수집한 데이터를 이용한 실험을 통하여 검증하도록 한다.

  • PDF

A Study on Voltammetry System Design for Realizing High Sensitivity Nano-Labeled Sensor of Detecting Heavy Metals (중금속 검출용 고감도 나노표지센서 구현을 위한 볼타메트리 시스템 설계 연구)

  • Kim, Ju-Myoung;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.297-303
    • /
    • 2012
  • In this study, voltammetry system for realizing high sensitivity nano-labeled sensor of detecting heavy metals was designed, and optimal system operating conditions were determined. High precision digital to analog converter (DAC) circuit was designed to control applied unit voltage at working electrode and analog to digital converter (ADC) circuit was designed to measure the current range of $0.1{\sim}1000{\mu}A$ at counter electrode. Main control unit (MCU) circuit for controlling voltammetry system with 150 MHz clock speed, main memory circuit for the mathematical operation processing of the measured current value and independent power circuit for analog/digital circuit parts to reduce various noise were designed. From result of voltammetry system operation, oxidation current peaks which are proportional to the concentrations of Zn, Cd and Pb ions were found at each oxidation potential with high precision.

Development of an International Time Comparison System via GMS (정지기상위성을 이용한 국제시각비교시스템의 개발)

  • 이창복;이동두;정낙삼;장익수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.11
    • /
    • pp.1238-1246
    • /
    • 1992
  • We developed a time comparison system using the ranging signal of the geostationary meteorological satellite(GMS). By using the system time comparison between the KRISS(Korea Research Institute of Standards and Science) cesium atomic clock and the GMS ranging signal has been carried out and the results have shown that the precision of time comparison at KRISS is about 10 ns. For the more accurate measurements we calibrated the receiver delay time between KRISS receiver and CRL(Communications Research Laboratory) receiver by using the portable GMS receiver.

  • PDF

A Radiation-hardened Model Design of CMOS Digital Logic Circuit for Nuclear Power Plant IC and its Total Radiation Damage Analysis (원전용 IC를 위한 CMOS 디지털 논리회로의 내방사선 모델 설계 및 누적방사선 손상 분석)

  • Lee, Min-Woong;Lee, Nam-Ho;Kim, Jong-Yeol;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.745-752
    • /
    • 2018
  • ICs(Integrated circuits) for nuclear power plant exposed to radiation environment occur malfunctions and data errors by the TID(Total ionizing dose) effects among radiation-damage phenomenons. In order to protect ICs from the TID effects, this paper proposes a radiation-hardening of the logic circuit(D-latch) which used for the data synchronization and the clock division in the ICs design. The radiation-hardening technology in the logic device(NAND) that constitutes the proposed RH(Radiation-hardened) D-latch is structurally more advantageous than the conventional technologies in that it keeps the device characteristics of the commercial process. Because of this, the unit cell based design of the RH logic device is possible, which makes it easier to design RH ICs, including digital logic circuits, and reduce the time and cost required in RH circuit design. In this paper, we design and modeling the structure of RH D-latch based on commercial $0.35{\mu}m$ CMOS process using Silvaco's TCAD 3D tool. As a result of verifying the radiation characteristics by applying the radiation-damage M&S (Modeling&Simulation) technique, we have confirmed the radiation-damage of the standard D-latch and the RH performance of the proposed D-latch by the TID effects.

Generation of Ionospheric Delay in Time Comparison for a Specific GEO Satellite by Using Bernese Software

  • Jeong, Kwang Seob;Lee, Young Kyu;Yang, Sung Hoon;Hwang, Sang-wook;Kim, Sanhae;Song, Kyu-Ha;Lee, Wonjin;Ko, Jae Heon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.125-133
    • /
    • 2017
  • Time comparison is necessary for the verification and synchronization of the clock. Two-way satellite time and frequency (TWSTFT) is a method for time comparison over long distances. This method includes errors such as atmospheric effects, satellite motion, and environmental conditions. Ionospheric delay is one of the significant time comparison error in case of the carrier-phase TWSTFT (TWCP). Global Ionosphere Map (GIM) from Center for Orbit Determination in Europe (CODE) is used to compare with Bernese. Thin shell model of the ionosphere is used for the calculation of the Ionosphere Pierce Point (IPP) between stations and a GEO satellite. Korea Research Institute of Standards and Science (KRISS) and Koganei (KGNI) stations are used, and the analysis is conducted at 29 January 2017. Vertical Total Electron Content (VTEC) which is generated by Bernese at the latitude and longitude of the receiver by processing a Receiver Independent Exchange (RINEX) observation file that is generated from the receiver has demonstrated adequacy by showing similar variation trends with the CODE GIM. Bernese also has showed the capability to produce high resolution IONosphere map EXchange (IONEX) data compared to the CODE GIM. At each station IPP, VTEC difference in two stations showed absolute maximum 3.3 and 2.3 Total Electron Content Unit (TECU) in Bernese and GIM, respectively. The ionospheric delay of the TWCP has showed maximum 5.69 and 2.54 ps from Bernese and CODE GIM, respectively. Bernese could correct up to 6.29 ps in ionospheric delay rather than using CODE GIM. The peak-to-peak value of the ionospheric delay for TWCP in Bernese is about 10 ps, and this has to be eliminated to get high precision TWCP results. The $10^{-16}$ level uncertainty of atomic clock corresponds to 10 ps for 1 day averaging time, so time synchronization performance needs less than 10 ps. Current time synchronization of a satellite and ground station is about 2 ns level, but the smaller required performance, like less than 1 ns, the better. In this perspective, since the ionospheric delay could exceed over 100 ps in a long baseline different from this short baseline case, the elimination of the ionospheric delay is thought to be important for more high precision time synchronization of a satellite and ground station. This paper showed detailed method how to eliminate ionospheric delay for TWCP, and a specific case is applied by using this technique. Anyone could apply this method to establish high precision TWCP capability, and it is possible to use other software such as GIPSYOASIS and GPSTk. This TWCP could be applied in the high precision atomic clocks and used in the ground stations of the future domestic satellite navigation system.

Precision Length Metrology using the Optical Comb of Femtosecond Pulse Lasers (펨토초 레이저의 주파수 모드를 이용한 정밀 길이 측정)

  • Jin Jong-Han;Kim Young-Jin;Kim Seung-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.216-219
    • /
    • 2005
  • In precision length measurements using optical interferometry based on homodyne or heterodyne principles, it is crucial to have frequency-stabilized monochromatic light sources. To the end, we investigate the possibility of utilizing the optical comb constituted by ultrashort femtosecond pulse lasers generated from a gain medium of titanium-doped aluminium oxide $(Ti:Al_2O_3)$. The optical comb is stabilized by locking to the caesium atomic clock, which allows all the modes of the comb to maintain an extremely high level of frequency stabilization to precision of one part in $10^{16}$. Then, high precision length measurements are realized by extracting a single or group of particularly wanted optical frequency components or by adopting a third-party light source locked to the comb. Required measurement system setup will be presented in detail along with experimental results.

  • PDF

Development and Characterization of Mobile Transceiver for Millimeter-Wave Channel Sounding Measurement (밀리미터파 채널사운딩 측정을 위한 이동형 송수신 장치의 개발과 특성평가)

  • Jonguk Choi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.35-40
    • /
    • 2024
  • In this paper, the design, implementation, and analysis of a device capable of transmitting and receiving millimeter-wave signals and performing channel sounding measurements in atmospheric conditions at distances of up to approximately 10km outdoors are presented. The device is expected to be instrumental in studying the propagation characteristics of millimeter-wave frequencies. Utilizing data such as received power levels and power delay profiles (PDPs), comparisons with predicted values using path loss, K-factor, and other propagation models are facilitated. The mobile transceiver unit, integrated onto a vehicle platform, allows for flexible adjustment of transmitter and receiver positions, while synchronization issues with distance are mitigated using a rubidium atomic clock. Furthermore, automatic boresight alignment using scanning techniques is employed to locate the main sector of the antenna.

Design and Evaluation of PMU Performance Measurement and GPS Monitoring System for Power Grid Stabilization

  • Yang, Sung-Hoon;Lee, Chang Bok;Lee, Young Kyu;Lee, Jong Koo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.67-72
    • /
    • 2015
  • Power grid techniques are distributed over general power systems ranging from power stations to power transmission, power distribution, and users. To monitor and control the elements and performance of a power system in real time in the extensive area of power generation, power transmission, wide-area monitoring (WAM) and control techniques are required (Sattinger et al. 2007). Also, to efficiently operate a power grid, integrated techniques of information and communication technology are required for the application of communication network and relevant equipment, computing, and system control software. WAM should make a precise power grid measurement of more than once per cycle by time synchronization using GPS. By collecting the measurement values of a power grid from substations located at faraway regions through remote communication, the current status of the entire power grid system can be examined. However, for GPS that is used in general national industries, unexpected dangerous situations have occurred due to its deterioration and jamming. Currently, the power grid is based on a synchronization system using GPS. Thus, interruption of the time synchronization system of the power system due to the failure or abnormal condition of GPS would have enormous effects on each field such as economy, security, and the lives of the public due to the destruction of the synchronization system of the national power grid. Developed countries have an emergency substitute system in preparation for this abnormal situation of GPS. Therefore, in Korea, a system that is used to prepare for the interruption of GPS reception should also be established on a long-term basis; but prior to this, it is required that an evaluation technique for the time synchronization performance of a GPS receiver using an atomic clock within the power grid. In this study, a monitoring system of time synchronization based on GPS at a power grid was implemented, and the results were presented.

ASF Measurements on Maritime by the Signal of the Pohang Loran-C (9930M) (포항 로란-C (9930M) 신호를 이용한 ASF 해상측정)

  • Lee, Chang-Bok;Lee, Jong-Koo;Kim, Young-Jae;Hwang, Sang-Wook;Lee, Sang-Jeong;Yang, Sung-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.35 no.8
    • /
    • pp.619-624
    • /
    • 2011
  • A significant factor limiting the ranging accuracy of Loran (Long Range Navigation) signal is the additional secondary factor (ASF) in the time of arrival (TOA) measurements. Precise ASF values are essential if Loran deliver the high absolute accuracies demanded for aircraft approach, maritime harbour entrance. We measured the absolute propagation delay between Pohang Loran signal and Loran receiver output signal by comparing with Cesium atomic clock. In this study we measured ASFs between Pohang 9930M station and the 12 measurement points in the Yeongil Bay by using the measurement technique of absolute time delay. The measurement points were spaced at interval of 3 km by 3 km. An E-field antenna and an H-field antenna were used to improve the accuracy of ASF measurements and a DGPS (Differential GPS) receiver was used for accurate positions. We have gotten the result that the measured ASFs were compared with the predicted ASFs through this measurement technique.