• Title/Summary/Keyword: Atmospheric particulate ($PM_{2.5}$)

Search Result 224, Processing Time 0.021 seconds

Atmosphere-forest Exchange of Ammoniacal Nitrogen in a Subalpine Deciduous Forest in Central Japan during a Summer Week

  • Hayashi, Kentaro;Matsuda, Kazuhide;Takahashi, Akira;Nakaya, Ko
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.134-143
    • /
    • 2011
  • The present study aimed to investigate the diurnal variations in air concentrations and exchange fluxes of ammoniacal nitrogen ($NH_x$: ammonia ($NH_3$) and particulate ammonium) in a subalpine deciduous forest in central Japan during a week in summer. The $NH_3$ concentrations ($0.50\;{\mu}g\;N\;m^{-3}$ on average) showed a clear circadian variation, i.e., high and low in the daytime and nighttime, respectively. The concentration of particulate ammonium in the coarse fractions was extremely low, whereas that for the PM2.5 fraction was relatively high $0.55\;{\mu}g\;N\;m^{-3}$ on average). The main inorganic ion components of PM2.5 at the study site were ammonium and sulfate. The exchange fluxes of $NH_x$ were bidirectional. Both the maximum and minimum values occurred in the daytime, i.e., $0.39\;mg\;N\;m^{-2}\;hr^{-1}$ of downward flux and $0.11\;mg\;N\;m^{-2}\;hr^{-1}$ of upward flux for $NH_3$ and $0.25\;mg\;N\;m^{-2}\;hr^{-1}$ of downward flux and $0.13\;mg\;N\;m^{-2}\;hr^{-1}$ of upward flux for PM2.5 ammonium. The exchange fluxes of $NH_x$ at night could be considered as zero. The mean deposition velocity during the research period was almost zero for both $NH_3$ and PM2.5 ammonium. The atmosphere-forest exchange of $NH_x$ in the forest during the study period was balanced. The remarkably large deposition of $NH_x$ was attributable to meteorological events such as showers the night before that thoroughly washed the forest canopy and subsequent clear skies in the morning, which enhanced convection. The cleaning effect of rainfall and the rapid change in convection in the early morning should be monitored to evaluate and generalize the gas and particle exchange in a forest.

High Time-resolution Characterization of PM2.5 Sulfate Measured in a Japanese Urban Site

  • Ma, Chang-Jin;Kang, Gong-Unn;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.280-287
    • /
    • 2015
  • The high time-resolution monitoring data are essential to estimate rapid changes in chemical compositions, concentrations, formation mechanisms, and likely sources of atmospheric particulate matter (PM). In this study, $PM_{2.5}$ sulfate, $PM_{2.5}$, $PM_{10}$, and the number concentration of size-resolved PMs were monitored in Fukuoka, Japan by good time-resolved methods during the springtime. The highest monthly average $PM_{2.5}$ sulfate was found in May ($8.85{\mu}g\;m^{-3}$), followed by April ($8.36{\mu}g\;m^{-3}$), March ($8.13{\mu}g\;m^{-3}$), and June ($7.22{\mu}g\;m^{-3}$). The cases exceed the Japanese central government's safety standard for $PM_{2.5}$ ($35{\mu}g\;m^{-3}$) reached 10.11% during four months campaign. The fraction of $PM_{2.5}$ sulfate to $PM_{2.5}$ varied from 12.05% to 68.11% with average value of 35.49% throughout the entire period of monitoring. This high proportion of sulfate in $PM_{2.5}$ is an obvious characteristic of the ambient $PM_{2.5}$ in Fukuoka during the springtime. However, the average fraction of $PM_{2.5}$ sulfate to $PM_{2.5}$ in three rain events occurred during our intensive campaign fell right down to 15.53%. Unusually high $PM_{2.5}$ sulfate (> $30{\mu}g\;m^{-3}$) marked on three days were probably affected by the air parcels coming from the Chinese continent, the natural sulfur in the remote marine atmosphere, and a large number of ships sailing on the nearby sea. The theoretical number concentration of $(NH_4)_2SO_4$ in $PM_{0.5-0.3}$ was originally calculated and then compared to $PM_{2.5}$ sulfate. A close resemblance between the diurnal variations of the theoretically calculated number concentration of $(NH_4)_2SO_4$ in $PM_{0.5-0.3}$ and $PM_{2.5}$ sulfate concentration indicates that the secondary formed $(NH_4)_2SO_4$ was the primary form of sulfate in $PM_{2.5}$ during our monitoring period.

Ambient Fine and Ultrafine Particle Measurements and Their Correlations with Particulate PAHs at an Elementary School Near a Highway

  • Song, Sang-Hwan;Paek, Do-Myung;Lee, Young-Mee;Lee, Chul-Woo;Park, Chung-Hee;Yu, Seung-Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.96-103
    • /
    • 2012
  • Ambient particulate matter (PM) and particle-bound polycyclic aromatic hydrocarbon (PAH) concentrations were measured continuously for 70 days at a Korean elementary school located near a highway. The $PM_{10}$, $PM_{2.5}$, and $PM_1$ values were measured with a light-scattering, multi-channel, aerosol spectrometer (Grimm, Model 1.107). The number concentrations of the particles were measured using a scanning mobility particle sizer and counter (SMPS+C) which counted particles from 11.1 to 1083.3 nm classified in 44 channels. Particle-bound PAHs were measured with a direct reading, photoelectric aerosol sensor. The daily $NO_2$, $SO_2$, and CO concentrations were obtained from a national air-monitoring station located near the school. The average concentrations of $PM_{10}$, $PM_{2.5}$, and $PM_1$ were 75.3, 59.3, and $52.1{\mu}g/m^3$, respectively. The average number concentration of the ultrafine particles (UFPs) was $46,307/cm^3$, and the averaged particle-bound PAHs concentration was $17.9ng/cm^3$ during the study period. The ambient UFP variation was strongly associated with traffic intensity, particularly peak concentrations during the traffic rush hours. Particles <100 nm corresponded to traffic-related pollutants, including PAHs. Additional longterm monitoring of ambient UFPs and high-resolution traffic measurements should be carried out in future studies. In addition, transient variations in the ambient particle concentration should be taken into consideration in epidemiology studies in order to examine the short-term health effects of urban UFPs.

Atmospheric Circulation Patterns Associated with Particulate Matter over South Korea and Their Future Projection (한반도 미세먼지 발생과 연관된 대기패턴 그리고 미래 전망)

  • Lee, Hyun-Ju;Jeong, YeoMin;Kim, Seon-Tae;Lee, Woo-Seop
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.423-433
    • /
    • 2018
  • Particulate matter air pollution is a serious problem affecting human health and visibility. The variations in $PM_{10}$ concentrations are influenced by not only local emission sources, but also atmospheric circulation conditions. In this study, we investigate the temporal features of $PM_{10}$ concentrations in South Korea and the atmospheric circulation patterns associated with high concentration episodes of $PM_{10}$ during winter (December-January-February) 2001-2016. Based on those analyses, a Korea Particulate matter Index (KPI) is developed to represent the large-scale atmospheric pattern associated with high concentration episodes of $PM_{10}$. The atmospheric patterns are characterized by persistent high-pressure anomalies, weakened lower-level north-westerly anomalies, and northward shift of the upper-level meridional wind anomalies near the Korean Peninsula. To evaluate the change in occurrence of high concentration episodes of $PM_{10}$ under a possible future warmer climate, we apply KPI analysis to CMIP5 climate simulations. Here, historical and two representative concentration pathway (RCP) scenarios (RCP 4.5 and RCP 8.5) are used. It is found that the occurrence of atmospheric conditions favorable for high $PM_{10}$ concentration episodes tends to increase over South Korea in response to climate change. This suggests that large-scale atmospheric circulation changes under future warmer climate can contribute to increasing high $PM_{10}$ concentration episodes in South Korea.

Scavenging Efficiency Based on Long-Term Characteristics of Precipitation and Particulate Matters in Seoul, Korea (서울지역 장기간 강수와 미세먼지의 특성 분석에 기반한 미세먼지 세정효과)

  • Suji Han;Junshik Um
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.367-385
    • /
    • 2023
  • The variabilities of precipitation and particulate matters (i.e., PM10 and PM2.5) and the scavenging efficiency of PMs by precipitation were quantified using long-term measurements in Seoul, Korea. The 21 years (2001~2021) measurements of precipitation and PM10 mass concentrations, and the 7 years (2015~2021) of PM2.5 mass concentrations were used. Statistical analysis was performed for each period (i.e., year, season, and month) to identify the long-term variabilities of PMs and precipitation. PM10 and PM2.5 decreased annually and the decreasing rate of PM10 was greater than PM2.5. The precipitation intensity did not show notable variation, whereas the annual precipitation amount showed a decreasing trend. The summer precipitation amount contributed 61.10% to the annual precipitation amount. The scavenging efficiency by precipitation was analyzed based on precipitation events separated by 2-hour time intervals between hourly precipitation data for 7 years. The scavenging efficiencies of PM10 and PM2.5 were quantified as a function of precipitation characteristics (i.e., precipitation intensity, amount, and duration). The calculated average scavenging efficiency of PM10 (PM2.5) was 39.59% (35.51%). PM10 and PM2.5 were not always simultaneously scavenged due to precipitation events. Precipitation events that simultaneously scavenged PM10 and PM2.5 contributed 42.24% of all events, with average scavenging efficiency of 42.93% and 43.39%. The precipitation characteristics (i.e., precipitation intensity, precipitation amount, and precipitation duration) quantified in these events were 2.42 mm hr-1, 15.44 mm, and 5.51 hours. This result corresponds to 145% (349%; 224%) of precipitation intensity (amount; duration) for the precipitation events that do not simultaneously scavenge PM10 and PM2.5.

Effect of regional climatic conditions, air pollutants, and season on the occurrence and severity of injury in trauma patients

  • Kim, Young-Min;Yu, Gyeong-Gyu;Shin, Hyun-Jo;Lee, Suk-Woo;Park, Jung-Soo;Kim, Hoon
    • Journal of The Korean Society of Emergency Medicine
    • /
    • v.29 no.6
    • /
    • pp.603-615
    • /
    • 2018
  • Objective: We analyzed the association between regional weather and temporal changes on the daily occurrence of trauma emergencies and their severity. Methods: In this cross-sectional prospective study, we investigated daily atmospheric patterns in trauma episodes in 1,344 patients in Cheongju city, South Korea, from January 2016 to December 2016 and analyzed the association of trauma occurrence and Injury Severity Scores (ISS) with weather conditions on a daily scale. Results: The mean age of trauma patients was $53.0{\pm}23.8years$ and average ISS was $9.0{\pm}2.0$. Incidence of trauma was positively correlated with average temperature (r=0.512, P<0.001) and atmospheric pressure (r=0.332, P=0.010) and negatively correlated with air pollutants (particulate matter less than $2.5{\mu}m^3$ [PM2.5], r=-0.629, P<0.001; particulate matter less than $10{\mu}m^3$ [PM10], r=-0.679, P<0.001). ISS was not significantly correlated with climate parameters and air pollutants, and variability was observed in the frequency and severity of trauma by time of day (highest occurrence, 16-20 pm; highest ISS, 4-8 am), day of the week (highest occurrence and highest ISS, Saturday), month of the year (highest occurrence, July; highest ISS, November), and season (highest incidence, summer; highest ISS, autumn). Conclusion: The study shows a positive relationship between trauma occurrence and specific weather conditions, such as atmospheric temperature and pressure. There was a negative relationship between concentrations of PM2.5 or PM10, and trauma occurrence. However, no correlation was observed between weather conditions or the concentrations of air pollutants and ISS. In addition, seasonal, circaseptan, and circadian variations exist in trauma occurrence and severity. Thus, we suggest that evaluation of a larger, population-based data set is needed to further investigate and confirm these relationships.

Indoor and Outdoor Particulate Matter: The Current and Future in Monitoring, Assessment, and Management (실내 외 미세먼지 측정 및 관리 기술 동향)

  • Kim, Jae-Jin;Choi, Wonsik;Kim, Jinsoo;Noh, Youngmin;Son, Youn-Suk;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1635-1641
    • /
    • 2020
  • Air pollution is one of the most severe threats to society globally due to the rapid expansion of urbanization and industrialization. Particularly, particulate matter (PM) pollution was recently designated as a social disaster by the Korean government because of increases in public concerns and the accumulation of scientific evidence that links high levels of PM2.5 (PM smaller than 2.5 ㎛ in diameter) to a long list of adverse health effects. Atmospheric PM concentrations can also affect the indoor PM levels to which people are exposed most of the time. Thus, understanding the characteristics of indoor and ambient PM pollution based on measurements, model simulations, risk assessments, and management technologies is inevitable in establishing effective policies to mitigate social, economic, and health costs incurred by PM pollution. In this special issue, we introduce several interesting studies concerning indoor and outdoor PM from the perspective of monitoring, assessment, and management being conducted by i-SEED (School of Integrated Science for Sustainable Earth & Environmental Disaster at Pukyong National University) and SPMC (School Particulate Matter Center for Energy and Environmental Harmonization). We expect that this special issue can improve our understanding of the current and future of indoor and outdoor PM pollution, integrating the results from interdisciplinary research groups from various academic fields.

Artificial and Biological Particles in the Springtime Atmosphere

  • Ma, Chang-Jin;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.4
    • /
    • pp.209-216
    • /
    • 2013
  • This study focused on a comprehensive and detailed interpretation for the springtime air quality influenced by both artificial (particulate matter (PM) and asbestos) and biological (pollen) sources in Fukuoka Prefecture, Japan. An intensive measurement of PM was conducted at four characteristic sites (i.e., a heavy traffic area, a residential area, an industrial area, and a desolate area) in the Fukuoka Prefecture during spring of 2007. Analysis of major ionic species in $PM_{2.5}$ was performed by an Ion Chromatography, and asbestos and pollen were identified by Scanning Electron Microscopy with an energy dispersive X-ray spectrometer (EDX). $PM_{2.5}$ concentration ($65.3{\mu}gm^{-3}$) measured in an industrial area (site C) was extraordinarily high compared to those monitored in other areas; it greatly exceeded the Japan's $PM_{2.5}$ criteria (a daily average of $35{\mu}gm^{-3}$). NOAA's HYSPLIT dispersion model suggests that this high level of $PM_{2.5}$ monitored at site C is unlikely to affect the Asian continent. The ambient concentrations of $PM_{2.5}$-related anions ($NH_4{^+}$, $NO_3{^-}$, and $SO_4{^{2-}}$) and their relative contributions to $PM_{2.5}$ were also investigated in four study areas. The concentrations of these major water-soluble ions exhibit not only strong spatial dependence but also different ratios to each other. Asbestos fiber (crocidolite and amosite) concentration values changed in the range of 2.5 to 14.4 f per liter of air. The number of pollen grains showed that Cedar ranked higher in concentration than other types of pollen, with the maximum concentration at site A.

A Study on the Concentration Characteristics of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in Chongju

  • Lee, Hak-Sung;Kang, Byung-Wook;Kwon, Dong-Hyuk;Yeo, Hyun-Gu;Chun, Man-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E2
    • /
    • pp.89-97
    • /
    • 2003
  • Ambient polycyclic aromatic hydrocarbons (PAHs) were measured during the winter and summer of 2002 in Chongju. A filter pack and polyurethane foam (PUF) system was employed to collect simultaneously the particulate and gas phase PAHs. The samples were then analyzed using a gas chromatograph equipped with mass spectrometer detectors (GC/MSD). A total of 29 samples were collected and 11 PAH species were identified. The lower molecular weight PAH compounds (3∼4 rings) dominated the total PAH mass. The higher molecular weight PAH compounds (5∼6 rings) were less abundant. The PAHs were showed to exhibit seasonal variations. The concentrations of all com-pounds were significantly higher in winter than summer. The lower molecular weight PAHs were mostly found in the gas phase whereas the heavier ones were mainly associated with particulate phase. Vehicle emissions are likely to be the primary contributor of PAHs in Chongju. This study also demonstrated that it is necessary to perform simultaneously particulate and gas phase measurements to determine the accurate concentrations of ambient PAHs.

Design and performance of Low-Volume PM10/2.5/1.0 Trichotomous Sampler Inlet (PM10/2.5/1/0 Trichotomous 도입부 설계 밀 성능평가)

  • Song Chang-Byeong;Kim Hyeon-Tae;Lee Gyu-Won
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.358-359
    • /
    • 2002
  • Particulate matter smaller than $10{\mu}textrm{m}$ in aerodynamic diameter (PM10) is known as thoracic particles that are capable of reaching the thoracic region of humans. PM10 is further divided into two size ranges, which are fine particles (nuclei mode plus accumulation mode) and coarse particles, based on different sources and chemical composition. Fine particles can penetrate deep into the alveolar region of the human lungs, while coarse particles be deposited in the upper respiratory system. (omitted)

  • PDF