• Title/Summary/Keyword: Atmospheric environment

Search Result 7,266, Processing Time 0.036 seconds

EFFECT OF CURING CONDITIONS ON THE MONOMER ELUTION OF ORTHODONTIC ACRYLIC RESIN (교정용 아크릴릭 레진의 중합조건에 따른 모노머 용리)

  • Noh, Hong-Seok;Kim, Jae-Moon;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.3
    • /
    • pp.477-486
    • /
    • 2008
  • Acrylic resin is widely used in dental practice. However, the residual monomer in acrylic resin could act as a negative biocompatability on human body. The aim of this study was to evaluate the amount of the monomer elution from polymerized orthodontic acrylic resin. Orthodontic acrylic resin was used in the study. The curing condition of the resin was controlled by temperature, pressure, aquatic and atmospheric environment. The duration and amount of monomer elution and timedependent plot was recorded by high performance liquid chromatography. The result showed that the only monomer eluted from the resin was methyl methacrylic acid. And the amount of the monomer elution has diminished considerably by time progress especially within 24 hours. Furthermore, elution of the residual monomer was significantly lower in group of pressure, moisture and elevated temperature than control (p<.05). According to this study, it was thought that the elution of residual monomer might be influenced by curing environment.

  • PDF

A Study on the Environmental Radioactive Strontium Analysis (환경중 방사성 스트론튬 분석 방법 연구)

  • Lee, Goung-Jin;Hwang, Jung-Lae;Chung, Woon-Kwan
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.3
    • /
    • pp.155-160
    • /
    • 1999
  • In the natural, there exist several kinds of radioactive isotopes. From atmospheric weapon tests and then some isotopes are naturally radioactivity above all things, nuclear power plant operation and man-made radioactive isotopes concern steadily growing in the environment. During the fission process of nuclear weapon tests and nuclear power plant operation, more than 200 radioactive isotopes are generated. Among them, $^{90}Sr$ and $^{137}Cs$ has been regarded as very important isotopes due to characteristics. In this paper, a quantitative analysis method of environment low level $^{90}Sr$ is studied. Radioactivity level of the environmental $^{90}Sr$ is very low, and it emits continuous beta spectrum, and $^{90}Sr$ exists together with $^{89}Sr$, $^{90}Y$ and other radioactive isotopes. It very difficult to make the quantitative analysis of $^{90}Sr$. For the analysis of low level radioactive strontium, enrich and chemical separation of strontium from the other radioactive isotopes are needed. For the estimation of strontium recovery ratio, so called SGAT(Strontium Gravimetric Analysis Technique) was generally used among the domestic research groups, and chemical procedures were developed appropriation for the SGAT, Recently, by using ICP(Inductively Coupled atomic Plasma emission spectrophotometer), amounts of stable atoms can be measured easily and accurately to the extend of ppm or ppb. In this paper, new chemical procedures are developed to exploits the ICP technique. New developed method has simpler chemical treatment procedures and then it gives more accurate results compared with the traditional SGAT.

  • PDF

Evaluation of the Usability of Micro-Sensors for the Portable Fine Particle Measurement (생활 속 미세먼지 영향평가를 위한 소형센서의 신뢰성 및 활용성 평가)

  • Kim, Jinsu;Jang, Youjung;Kim, Jinseok;Park, Minwoo;Bu, Chanjong;Lee, Yungu;Kim, Younha;Woo, Jung-Hun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.4
    • /
    • pp.378-393
    • /
    • 2018
  • As atmospheric fine dust problems in Korea become more serious, there are growing needs to find the concentration of fine particles in indoor and outdoor areas and there are increasing demands for sensor-based portable monitoring devices capable of measuring fine dust concentrations instantly. The low-cost portable monitoring devices have been widely manufactured and used without the prescribed certification standards which would cause unnecessary confusion to the concerned public. To evaluate the reliability those devices and to improve their usability, following studies were conducted in this work; 1) The comparisons between sensor-based devices and comparison with more accurate devices were performed. 2) Several experiments were conducted to understand usefulness of the portable monitoring devices. As results, the absolute concentration levels need to be adjusted due to insensitivity of the tiny light scattering sensors in the portable devices, but their linearity and reproducibility seem to be acceptable. By using those monitoring devices, users are expected to have benefits of recognizing the changes of concentration more quickly and could help preventing themselves from the adverse health impacts.

The Scale-Dependent Dispersion Through Convergent Flow Tracer Tests in Alluvial Aquifer with High Permeability at the Ttaan isle, Gimhae City (김해 딴섬의 고투수성 충적층에서 수렴흐름 추적자시험에 의한 규모종속 수리분산 연구)

  • Kang, Dong-Hwan;Shim, Byoung-Ohan;Kwon, Byung-Hyuk;Kim, Il-Kyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.17-25
    • /
    • 2007
  • Convergent flow tracer test for 2 m (IW-1 well) and 5 m (IW-2 well) of test scale was conducted at the alluvial aquifer with high permeability and storativity. Pumping rate for convergent flow tracer test were $2,500m^3/day$, and the chloride tracer of 5 kg was instantaneously injected into IW-1 and IW-2 wells. Differences of first arrival time and peak concentration were analyzed by using the concentration breakthrough curves of chloride. Recovered chloride mass were analyzed by recovered cumulative mass curves. And, increment and decrement for chloride concentration were analyzed through chloride concentration versus recovered cumulative mass ratio graphs. Also, increment and decrement ratios of chloride concentration were estimated through linear regression analyses for increment and decrement intervals of chloride concentration. Longitudinal dispersivities were estimated by quot;Converging Radial Flow With Instantaneous Injectionquot; method using CATTI code. Longitudinal dispersivities estimated by CATTI code were 0.4152 m between pumping well and IW-1 well, and 3.2665 m between pumping well and IW-2 well. Longitudinal dispersivity was increased according to far distance from the pumping well. The longitudinal dispersivity according to distance were estimated as 0.21 between pumping well and IW-1 well, and 0.65 between pumping well and IW-2 well.

Effect of Inorganic Admixture for Magnesia Cement Using MgCO3 and Serpentine (MgCO3와 사문석을 사용한 마그네시아 시멘트의 무기 첨가제 영향)

  • Lee, Jong-Kyu;Soh, Jung-Sub
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • The carbon dioxide($CO_2$) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical method to reducing $CO_2$ for building materials is the addition of slag and fly ash, like pozzolan material, while another method is reducing $CO_2$ production by carbon negative cement development. The MgO-based cement was from the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements could improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, the basic research for magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as main starting materials, as well as silica fume, fly ash and blast furnace slag for the mineral admixture, were carried out for industrial waste material recycling. In order to increase the hydration activity, $MgCl_2$ was also added. To improve hydration activity, $MgCO_3$ and serpentinite were fired at $700^{\circ}C$ and autoclave treatment was conducted. In the case of $MgCO_3$ as starting material, hydration activity was the highest at firing temperature of $700^{\circ}C$. This $MgCO_3$ was completely transferred to MgO after firing. This occurred after the hydration reaction with water MgO was transferred completely to $Mg(OH)_2$ as a hydration product. In the case of using only $MgCO_3$, the compressive strength was 3.5MPa at 28 days. The addition of silica fume enhanced compressive strength to 5.5 MPa. In the composition of $MgCO_3$-serpentine, the addition of pozzolanic materials such as silica fume increased the compression strength. In particular, the addition of $MgCl_2$ compressive strength was increased to 80 MPa.

Design and Implementation of the Channel Adaptive Broadband MODEM (채널 적응형 광대역 모뎀 설계 및 구현)

  • Chang, Dae-Ig;Kim, Nae-Soo
    • The KIPS Transactions:PartC
    • /
    • v.11C no.1
    • /
    • pp.141-148
    • /
    • 2004
  • Recently, the demand of broadband communications such as high-speed internet, HDTV, 3D-HDTV and ATM backbone network has been increased drastically. For transmitting the broad-bandwidth data using wireless network, it is needed to use ka-band frequency. However, the use of this ka-band frequency is seriously affected to the received data performance by rain fading and atmospheric propagation loss at the Ka-band satellite communication link. So, we need adaptive MODEM to endure the degraded performance by channel environment. In this paper, we will present the structure and design of the 155Mbps adaptive Modem adaptively compensated against channel environment. In order to compensate the rain attenuation over the ka-band wireless channel link, the adaptive coding schemes with variable coding rates and the multiple modulation schemes such as trellis coded 8-PSK, QPSK, and BPSK are adopted. And the blind demodulation scheme is proposed to demodulate without Information of modulation mode at the multi-mode demodulator, and the fast phase ambiguity resolving scheme is proposed. The design and simulation results of adaptive Modem by SPW model are provided. This 155Mbps adaptive MODEM was designed and implemented by single ASIC chip with the $0.25\mu{m}$ CMOS standard cell technology and 950 thousand gates.

Current status and prospects of plant diagnosis and phenomics research by using ICT remote sensing system (ICT 원격제어 system 이용 식물진단, Phenomics 연구현황 및 전망)

  • Jung, Yu Jin;Nou, Ill Sup;Kim, Yong Kwon;Kim, Hoy Taek;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • Remote Sensing (RS) is a technique to obtain necessary information in a non-contact and non-destructive method by using various sensors on the surface, water or atmospheric phenomena. These techniques combine elements such as sensors, and platform and information communication technology (ICT) for mounting the sensor. ICT has contributed significantly to the success of smart agriculture through quantification and measurement of environmental factors and information such as weather, crop and soil management to distribution and consumption stage, as well as the production stage by the cloud computer. Remote sensing techniques, including non-destructive non-contact bioimaging (remote imaging) is required to measure the plant function. In addition, bioimaging study in plant science is performed at the gene, cellular and individual plant level. Recently, bioimaging technology is considered the latest phenomics that identifies the relationship between the genotype and environment for distinguishing phenotypes. In this review, trends in remote sensing in plants, plants diagnostics and response to environment and status of plants phonemics research were presented.

Evaluation of a Hydro-ecologic Model, RHESSys (Regional Hydro-Ecologic Simulation System): Parameterization and Application at two Complex Terrain Watersheds (수문생태모형 RHESSys의 평가: 두 복잡지형 유역에서의 모수화와 적용)

  • Lee, Bo-Ra;Kang, Sin-Kyu;Kim, Eun-Sook;Hwang, Tae-Hee;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.247-259
    • /
    • 2007
  • In this study, we examined the flux of carbon and water using an eco-hydrological model, Regional Hydro-Ecologic Simulation System (RHESSys). Our purposes were to develop a set of parameters optimized for a well-designed experimental watershed (Gwangneung Research Watershed, GN) and then, to test suitability of the parameters for predicting carbon and water fluxes of other watershed with different regimes of climate, topography, and vegetation structure (i.e Gangseonry Watershed in Mt. Jumbong, GS). Field datasets of stream flow, soil water content (SWC), and wood biomass product (WBP) were utilized for model parameterization and validation. After laborious parameterization processes, RHESSys was validated with the field observations from the GN watershed. The parameter set identified at the GN watershed was then applied to the GS watershed in Mt. Jumbong, which resulted in good agreement for SWC but poor predictability for WBP. Our study showed that RHESSys simulated reliable SWC at the GS by adjusting site-specific porosity only. In contrast, vegetation productivity would require more rigorous site-specific parameterization and hence, further study is necessary to identify primary field ecophysiological variables for enhancing model parameterization and application to multiple watersheds.

Stratification Variation of Summer and Winter in the South Sea of Korea (한국 남해의 여름과 겨울철 성층 변동)

  • Lee, Chung-Il;Koo, Do-Hyung;Yun, Jong-Hwui;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.119-125
    • /
    • 2007
  • In order to illustrate the variation cf stratification and to know the effects of the temperature and the salinity on the stratification in the South Sea of Korea, the stratification parameter defined as potential energy anomaly (PEA, $V(J/m^3)$) introduced by Simpson and Hunter (1974) was used. The oceanographic data were obtained in August 1999 and February 2000 by National Fisheries Research and Development Institute (NFRDI). V in August is generally high in offshore and low in near shore. However, in February, V in the near shore is higher than that cf the offshore due to the vertical temperature gradient between surface and bottom layer caused by the expansion of South Korean Coastal Waters (SKCW). In summer, the increase of the atmospheric heating acts on the stratification as the buoyancy forcing. In most cases, the effect cf the temperature on the stratification is stronger than that of the salinity. The temperature effect is predominantly due to the extent of the intrusion of Tsushima Warm Current into the study area. However, at stations where V is high the effect of the salinity is also significant. In winter, V is very low due to the decrease cf the buoyancy forcing, but some stations show the relatively high V due to the expansion of SKCW and salinity in winter unlike that in summer makes the stratification weak.

  • PDF

Biogeochemistry of Metal and Nonmetal Elements in the Surface Sediment of the Gamak Bay (가막간 표층퇴적물 중의 금속 및 비금속 원소의 생지화확적 분포특성)

  • Kim, Pyoung-Joong;Shon, Sang-Gyu;Park, Soung-Yun;Kim, Sang-Soo;Jang, Su-Jeong;Jeon, Sang-Baek;Ju, Jae-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.67-83
    • /
    • 2012
  • In order to evaluate die geochemical characteristics of sediment in a semi-enclosed bay used as shellfish and fish farming area, the concentrations of metallic(V, Cr, Mn, Fe, Co. Ni, Cu, Zn, Ag, Cd, Hg, Ph, As) and non-metallic(P, Se) elements and uranium were measured in the surface sediment samples collected from 19 stations of Gamak Bay in April 2010. Metal contamination status in the sediments were also evaluated using the sediment quality guidelines(SQGs) proposed by the National Oceanic and Atmospheric Administration(NOAA) and the enrichment factor(EF). The concentrations of elements in sediment were mainly controlled by quartz-dilution effect(V, Cr, Fe, Co and Ni), the dilution effect of organic matter(Cd and U), and metal redistribution by the decomposition of organic matter(Mn, Ag, As, and Se). The concentrations of metals, except As and Ni, in sediments from all sampling stations were lower than ERL values of NOAA. Conclusively, the surface sediment of Gamak Bay was slightly polluted with Ni, Ag, Cd, and Cd but was not polluted with other elements on the basis of EF results. Our results suggest that the surface sediment in Gamak Bay is not polluted by metallic elements.