• Title/Summary/Keyword: Atmospheric environment

Search Result 7,259, Processing Time 0.03 seconds

Air Quality in Northeast Asia with Emphasis on China (동북아시아지역 대기오염 현황 : 중국을 중심으로)

  • 김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.211-217
    • /
    • 1999
  • Data on ambient levels of $SO_2$, $NO_x$, and their emissions in Northeast Asia with special emphasis on China are collected and discussed. Also, study results on long-range transport of air pollutants in the region were briefly discussed. It was found that emissions of air pollutants in China are dominant over the region.

  • PDF

A Study on the Atmospheric Environment of Major Cities Using Clearness Index Analysis in Korea Peninsula (청명도 분석에 의한 한반도 주요 도시의 대기환경 평가)

  • Jo, Dok-Ki;Kang, Young-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.314-317
    • /
    • 2008
  • Since the atmospheric clearness index is main factor for evaluating atmosphere environment, it is necessary to estimate its characteristics all over the major cities in Korea Peninsula. We have begun collecting clearness index data since 1982 at 16 different cities in South Korea and estimated using empirical forecasting models at 21 different stations over the North Korea from 1982 to 2006. This considerable effort has been made for constructing a standard value from measured data at each city. The new clearness data for global-dimming analysis will be extensively used by evaluating atmospheric environment as well as by solar PV application system designer or users. From the results, we can conclude that 1) Yearly mean 63.5% of the atmospheric clearness index was evaluated for clear day all over the 37 cities in Korea Peninsula, 2) Clear day's atmospheric clearness index of spring and summer were 64.6% ana 64.8%, and for fall and winter their values were 63.3% and 61.3% respectively in Korea Peninsula.

  • PDF

A Study on the Atmospheric Environment and Simulations of Wind Field using MUKLIMO at the KNU Campus (경북대 캠퍼스 내 대기환경 및 미규모 모델(MUKLIMO)을 이용한 바람장 모의 연구)

  • Min Kyung-Duck;Yoon Ji-Won;Ahn Kwang-Deuk
    • Journal of Environmental Science International
    • /
    • v.14 no.3
    • /
    • pp.311-325
    • /
    • 2005
  • Elements of atmospheric environment, temperature, humidity and wind, at the compus of KNU(Kyungpook National University) were investigated by the observations. The observed data were compared with those of DWS (Daegu Weather Station). The simulations of wind field and dispersions of polluted gases were conducted by MUKLIMO under the various conditions. The results show that the atmospheric environment of KNU are suitable but the campus does not play role as a heat sink in the city. The simulations of wind field show the air flows and wind channels in the campus clearly. The exhausted gases by motor vehicles on the northside street of campus affect very much to the campus with $NW(300^{\circ})$ wind. The running cars in the campus are also pollute much on the campus with the various wind directions. The characteristics of environmental conditions, various meteorological fields, wind channels, and dispersion of exhausted gases at the campus of KNU were understood quantitatively in the study.

Algorithm for Determining Aircraft Washing Intervals Using Atmospheric Corrosion Monitoring of Airbase Data and an Artificial Neural Network (인공신경망과 대기부식환경 모니터링 데이터를 이용한 항공기 세척주기 결정 알고리즘)

  • Hyeok-Jun Kwon;Dooyoul Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.377-386
    • /
    • 2023
  • Aircraft washing is performed periodically for corrosion control. Currently, the aircraft washing interval is qualitatively set according to the geographical conditions of each base. We developed a washing interval determination algorithm based on atmospheric corrosion environment monitoring data at the Republic of Korea Air Force (ROKAF) bases and United States Air Force (USAF) bases to determine the optimal interval. The main factors of the washing interval decision algorithm were identified through hierarchical clustering, sensitivity analysis, and analysis of variance, and criteria were derived. To improve the classification accuracy, we developed a washing interval decision model based on an artificial neural network (ANN). The ANN model was calibrated and validated using the atmospheric corrosion environment monitoring data and washing intervals of the USAF bases. The new algorithm returned a three-level washing interval, depending on the corrosion rate of steel and the results of the ANN model. A new base-specific aircraft washing interval was proposed by inputting the atmospheric corrosion environment monitoring results of the ROKAF bases into the algorithm.

Development of Atmospheric Environmental Sensitivity Index by Socio-Statistical Survey (사회통계조사에 의한 대기환경 체감지수의 개발)

  • Kim Hyun-Goo;Lee Yung-Seop;Koo Cha-Mun;Ko Yu-Na
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.4
    • /
    • pp.421-430
    • /
    • 2006
  • This paper explores a new methodology of socio-statistical survey to classify environmental perception characteristics and to quantify atmospheric environmental sensitivity of neighboring people around a large industrial complex. In order to compensate intrinsic inclination against environmental problems, Atmospheric Environmental Sensitivity Index (AESI) is proposed as the weighted-summation of four representative questions asking the current status of the local air quality, which are chosen by the factor analysis of questionnaire. Atmospheric environmental perception is tried to be classified into interest/indifference characteristics and rational/emotional perception on environmental issues, positive/negative opinion on the solution of environmental problems. According to the chi-square cross-correlation and two-way layout analyses, it was clearly shown that environmental perception is categorized into two major groups, i.e., the positive-rational group having lower AESI and the negative-emotional group having higher AESI which means more seriously senses the status of local air quality.

Chemical characteristics of atmospheric particulate species in Mt. Soback, Korea(II):The sources and seasonal variations of metallic elements (소백산 대기 중 입자상 물질의 화학적 특성에 관한 연구(II):금속 원소의 계절적인 변화와 기원을 중심으로)

  • 최만식;이선기;최재천;이민영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.191-198
    • /
    • 1995
  • In order to evaluate the distribution and behaviour of atmospheric particulate metals in high-altitude area, we collected 22 aerosol samples using a high volume air sampler at Soback Mt. Meteorological Observation Station from Jan. to Nov. 1993 and analysed for metals (Al, Fe, Mg, Na, Ca, Mn, Co, Ni, Cu, Zn, Cd, and Pb) with ICP/AES and ICP/MS. Although sampling site is located in high-altitude and far from local sources of atmospheric pollutants, enrichments of metals are 2 times higher than those of western coastal reural area. This fact may imply that of metallic pollutants in the coastal rural site were came from further western side (e.g. China), atmospheric metals in this study area contain the signal of metropolitan cities located in the main wind direction (NNW). Sea salts are negligible in the aerosol particle population because reference elements of sea salts (Na, Mg) are all originated from soil particles. The contents of soil particles in aerosols are highest in spring and lowest in winter. Atmospheric enriched elements (Ni, Cu, Zn, Cd and Pb) are diluted with soil particles, especially during the yellow sand period. The results of factor analysis suggest possibility of interpreting their chemical significance in terms of sources (soil, pollutants) and gas-particle conversion processes (formation of ammonium sulfates, ammonium nitrates and/or their mixtures).

  • PDF

Accelerated Prediction Methodologies to Predict the Outdoor Exposure Lifespan of Galvannealed Steel

  • Kim, Ki Tae;Yoo, Young Ran;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.86-91
    • /
    • 2019
  • Generally, atmospheric corrosion is the electrochemical degradation of metal that can be caused by various corrosion factors of atmospheric components and weather, as well as air pollutants. Specifically, moisture and particles of sea salt and sulfur dioxide are major factors in atmospheric corrosion. Using galvanized steel is one of the most efficient ways to protect iron from corrosion by zinc plating on the surface of the iron. Galvanized steel is widely used in automobiles, building structures, roofing, and other industrial structures due to their high corrosion resistance relative to iron. The atmospheric corrosion of galvanized steel shows complex corrosion behavior, depending on the plating, coating thickness, atmospheric environment, and air pollutants. In addition, corrosion products are produced in different types of environments. The lifespans of galvanized steels may vary depending on the use environment. Therefore, this study investigated the corrosion behavior of galvannealed steel under atmospheric corrosion in two locations in Korea, and the lifespan prediction of galvannealed steel in rural and coastal environments was conducted by means of the potentiostatic dissolution test and the chemical cyclic corrosion test.