• Title/Summary/Keyword: Atmospheric effects

Search Result 1,160, Processing Time 0.024 seconds

Measurement of a Phase Plate Simulates Atmospheric Turbulence Depending on Laser Power (레이저 출력에 따른 난류 모사 위상판 측정)

  • Han-Gyol Oh;Pilseong Kang;Jaehyun Lee;Hyug-Gyo Rhee;Young-Sik Ghim
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.3
    • /
    • pp.99-105
    • /
    • 2023
  • The performance of astronomical telescopes can be negatively affected by atmospheric turbulence. To address this issue, techniques for atmospheric turbulence correction have been developed, requiring the simulation of atmospheric turbulence in the laboratory. The most practical way to simulate atmospheric turbulence is to use a phase plate. When measuring a phase plate that simulates strong turbulence, a Shack-Hartmann wave-front sensor is commonly used. However, the laser power decreases as it passes through the phase plate, potentially leading to a weak laser signal at the sensor. This paper investigates the need to control the laser power when measuring a phase plate that simulates strong atmospheric turbulence, and examines the effects of the laser power on the measured wavefront. For phase plates with relatively high Fried parameter r0, the laser power causes a variation of over 10% in r0. For phase plates with relatively low r0, the laser power causes a variation of less than 5%, which means that the influence of the laser power is negligible for phase plates that simulate strong atmospheric turbulence. Based on the system described in this paper, a phase plate simulating strong atmospheric turbulence can be measured at a laser power of 5 mW or higher. Therefore, controlling the laser's output power is necessary when measuring a phase plate for simulating atmospheric turbulence, especially for phase plates with low r0 values.

Modeling of Stochastic Process Noises for Kinematic GPS Positioning (GPS 이동측위를 위한 프로세스 잡음 모델링)

  • Chang-Ki, Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.123-129
    • /
    • 2015
  • The Kalman filter has been widely used in the kinematic GPS positioning due to its flexibility and efficiency in computational points of view. At the same time, the relative positioning technique also provided the high precision positioning results by removing the systematic errors in the measurements significantly. However, the positioning quality may be degraded following to longer in baseline length. For this case, it is required that the remaining atmospheric effects, such as double-difference ionospheric delay and zenith wet delay, should be properly modeled by examining the characteristics of the stochastic processes. In general, atmospheric effects are estimated with the assumption of random walk, or the first-order Gauss-Markov stochastic process, which requires the precise modeling on the corresponding process noises. Therefore, we determined and provided the parameters for modelling the process noises for atmospheric effects. The auto-correlation functions are empirically determined at first, and then the parameters are extracted from the empirical auto-correlation function. In fact, the test results can be either applied directly, or used as guidance values for the modeling of process noises in the kinematic GPS positioning.

Effects of Differential Heating by Land-Use types on flow and air temperature in an urban area (토지 피복별 차등 가열이 도시 지역의 흐름과 기온에 미치는 영향)

  • Park, Soo-Jin;Choi, So-Hee;Kang, Jung-Eun;Kim, Dong-Ju;Moon, Da-Som;Choi, Wonsik;Kim, Jae-Jin;Lee, Young-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.603-616
    • /
    • 2016
  • In this study, the effects of differential heating by land-use types on flow and air temperature at an Seoul Automated Synoptic Observing Systems (ASOS) located at Songwol-dong, Jongno-gu, Seoul was analyzed. For this, a computation fluid dynamics (CFD) model was coupled to the local data assimilation and prediction system (LDAPS) for reflecting the local meteorological characteristics at the boundaries of the CFD model domain. Time variation of temperatures on solid surfaces was calculated using observation data at El-Oued, Algeria of which latitude is similar to that of the target area. Considering land-use type and shadow, surface temperatures were prescribed in the LDAPS-CFD coupled model. The LDAPS overestimated wind speeds and underestimated air temperature compared to the observations. However, a coupled LDAPS-CFD model relatively well reproduced the observed wind speeds and air temperature, considering complicated flows and surface temperatures in the urban area. In the morning when the easterly was dominant around the target area, both the LDAPS and coupled LDAPS-CFD model underestimated the observed temperatures at the Seoul ASOS. This is because the Kyunghee Palace located at the upwind region was composed of green area and its surface temperature was relatively low. However, in the afternoon when the southeasterly was dominant, the LDAPS still underestimated, on the while, the coupled LDAPS-CFD model well reproduced the observed temperatures at the Seoul ASOS by considering the building-surface heating.

A Stochastic Approach for Prediction of Partially Measured Concentrations of Benzo[a]pyrene in the Ambient Air in Korea

  • Kim, Yongku;Seo, Young-Kyo;Baek, Kyung-Min;Kim, Min-Ji;Baek, Sung-Ok
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.197-207
    • /
    • 2016
  • Large quantities of air pollutants are released into the atmosphere and hence, must be monitored and routinely assessed for their health implications. This paper proposes a stochastic technique to predict unobserved hazardous air pollutants (HAPs), especially Benzo[a]pyrene (BaP), which can have negative effects on human health. The proposed approach constructs a nearest-neighbor structure by incorporating the linkage between BaP and meteorology and meteorological effects. This approach is adopted in order to predict unobserved BaP concentrations based on observed (or forecasted) meteorological conditions, including temperature, precipitation, wind speed, and air quality. The effects of BaP on human health are examined by characterizing the cancer risk. The efficient prediction provides useful information relating to the optimal monitoring period and projections of future BaP concentrations for both industrial and residential areas within Korea.