• Title/Summary/Keyword: Atmospheric conditions

Search Result 1,391, Processing Time 0.027 seconds

Evaluation of Phase Calibration Performance with KVN

  • Jung, Dawoon;Sohn, Young-Jong;Byun, Do-Young;Jung, Taehyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.36.2-36.2
    • /
    • 2016
  • In mm-VLBI, the quality of observation data is largely affected by atmospheric effect. The most challenging matter is that the phase of correlator output fluctuates rapidly resulting from a variation of atmospheric propagation delay. Consequently, it is demanding to achieve high Signal-to-Noise ratio by integrating data in time domain before calibrating atmospheric delay. However, Korean VLBI Network (KVN) has a unique system to make a 4-frequency (22/43/86/129 GHz) simultaneous observation in mm-wavelength and Frequency Phase Transfer (FPT) calibration technique has effectively removed atmospheric delay in the simultaneous multi-frequency observation of the KVN. For astrometric and astrophysical studies, we evaluated the FPT performance of KVN in various observing conditions. Using the total 38 bright AGNs, we have compared atmospheric conditions such as ground-based weather information, system temperature, atmospheric delay with the calibration results of FPT at 22/43/86/129 GHz during the five experiments in 2013, and quantified its performance in terms of coherence function and Allan variance. We present the analysis result of the relation between the FPT performance and observing conditions.

  • PDF

Analyses of the Impact of Atmospheric Conditions to Daylight Illuminance in a Small Space (기상인자의 변화에 따른 소규모 공간에서의 주광조도분석)

  • Kim, Soo-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.17-23
    • /
    • 2004
  • Daylight illuminance levels in a small space were calculated using the Superlite program under limited conditions of the turbidity and thickness of condensible water of atmosphere. Three sky conditions(clear sky with direct sun, clear sky with no direct sun, overcast sky with no direct sun) were used. The atmospheric conditions significantly impacted the illuminance levels under especially a clear sky with direct sun. The overcast sky with no direct sun provided no difference for the illuminance levels in the space. As the calculation points moved away from a window, reflected illuminance levels gradually increased but direct illuminance levels significantly decreased.

Comparison of Friction and Wear Characteristics of Thin Film Coatings Using Tribotesters at Atmospheric/Vacuum Conditions (대기압/진공 조건의 트라이보 시험기를 이용한 박막 코팅의 마찰/마모 특성 비교)

  • Kim, Hae-Jin;Kim, Dae-Eun;Kim, Chang-Lae
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.389-395
    • /
    • 2019
  • In various industries, thin film coatings are used to improve friction and wear characteristics. Various types of tribotesters are used to evaluate the friction and wear characteristics of such thin film coatings. In this study, we fabricated a micro-tribotester and Tribo-scanning electron microscopy (SEM) to compare the friction and wear characteristics of copper (Cu) coatings under an atmospheric pressure and a vacuum condition, respectively. The reliability of the different types of tribotesters was evaluated by performing calibrations for the sensor to measure the friction forces and normal loads. Using the two different types of devices, the friction and wear tests are conducted at the same experimental conditions excluding environment conditions such as the atmospheric pressure and vacuum condition. The friction coefficient at the vacuum condition is lower than at the atmospheric pressure. This difference in friction characteristics is due to the fact that wear phenomena occur differently according to the atmospheric pressure and vacuum condition. At the atmospheric pressure, the abrasive wear is the main wear mechanism. At the vacuum condition, the adhesive wear is the main wear mechanism. The reason for the difference in the wear mechanism of the Cu coating at the atmospheric pressure and the vacuum condition is that the oxidation phenomenon, which does not appear at the vacuum condition, occurs at the atmospheric pressure; therefore, the characteristics of the Cu coating change accordingly.

Characteristics of Wind Environment in Dongbok·Bukchon Wind Farm on Jeju (제주 동복·북촌 풍력발전단지의 바람환경 특성분석)

  • Jeong, Hyeong-Se;Kim, Yeon-Hee;Choi, Hee-Wook
    • New & Renewable Energy
    • /
    • v.18 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • Climatic characteristics were described using the LiDAR (Light Detection and Ranging) and the met-mast on Dongbok·Bukchon region. The influences of meteorological conditions on the power performance of wind turbines were presented using the data of Supervisory Control And Data Acquisition (SCADA) and met-mast of the Dongbok·Bukchon Wind Farm (DBWF) located in Jeju Island. The stability was categorized into three parameters (Richardson number, Turbulence intensity, and Wind shear exponent). DBWF was dominant in unstable atmospheric conditions. At wind speeds of 14 m/s or more, the proportion of slightly unstable conditions accounted for more than 50%. A clear difference in the power output of the wind turbine was exhibited in the category of atmospheric stability and turbulence intensity (TI). Particularly, a more sensitive difference in power performance was showed in the rated wind speeds of the wind turbine and wind regime with high TI. When the flow had a high turbulence at low wind speeds and a low turbulence at rated wind speeds, a higher wind energy potential was produced than that in other conditions. Finally, the high-efficiency of the wind farm was confirmed in the slightly unstable atmospheric stability. However, when the unstable state become stronger, the wind farm efficiency was lower than that in the stable state.

Estimation on The Atmospheric Stability and Flow Characteristics of Planetary Boundary Layer in Wolryong Coastal Region (월령 연안지역 대기경계층의 유동특성과 대기 안정성에 대한 고찰)

  • Jeong, Tae-Yoon;Lim, Hee-Chang;Kim, Hyun-Goo;Jang, Moon-Seok
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.857-865
    • /
    • 2009
  • The physical properties of an atmospheric boundary layer in Wolryong, a west coastal region of Jeju, South Korea, in terms of the atmospheric stability and roughness length, is important and relevant to both engineers and scientists. The study is aiming to understand the atmospheric stability around this region and its effect on the roughness length. We calculate the Monin-Obukhov length(L) against 3 typical regions of the atmospheric condition - unstable regime (-5$-0.2{\leq}H/L{\leq}0.2$) and stable regime (0.2

Effects of Atmospheric Stability and Surface Temperature on Microscale Local Airflow in a Hydrological Suburban Area (대기 안정도와 지표면 온도가 미세규모 국지 흐름에 미치는 영향: 수문지역을 대상으로)

  • Park, Soo-Jin;Kim, Do-Yong;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2013
  • In this study, the effects of atmospheric stability and surface temperature on the microscale local airflow are investigated in a hydrological suburban area using a computational fluid dynamics (CFD) model. The model domain includes the river and industrial complex for analyzing the effect of water system and topography on local airflow. The surface boundary condition is constructed using a geographic information system (GIS) data in order to more accurately build topography and buildings. In the control experiment, it is shown that the topography and buildings mainly determine the microscale airflow (wind speed and wind direction). The sensitivity experiments of atmospheric stability (neutral, stable, and unstable conditions) represent the slight changes in wind speed with the increase in vertical temperature gradient. The differential heating of ground and water surfaces influences on the local meteorological factors such as air temperature, heat flow, and airflow. These results consequentially suggest that the meteorological impact assessment is accompanied by the changes of background land and atmospheric conditions. It is also demonstrated that the numerical experiments with very high spatial resolution can be useful for understanding microscale local meteorology.

Wash Interval Optimization to Prevent Atmospheric Corrosion of Korean Aircrafts Made of Aluminum Alloys (알루미늄 합금 대기부식 예방을 위한 대한민국 공군 항공기 세척주기 최적화 연구)

  • Park, Won Dong;Gook, Phil Jun;Cho, Younho;Bahn, Chi Bum
    • Corrosion Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.189-197
    • /
    • 2016
  • It is a common practice to conduct periodic washes at designated intervals in order to prevent the atmospheric corrosion of aircraft. The wash interval depends on the atmospheric conditions, but the wash intervals set by the U.S. Air Force were widely adopted in Korea without detailed knowledge of the background data. Therefore, it is necessary to determine our own wash intervals representing the atmospheric and geographical conditions in Korea. This study analyzed previous wash interval algorithms and atmospheric data in Korea. New wash intervals are then proposed based on the corrosion rate equation in ISO-9223:2012. Atmospheric corrosion testing was conducted using 7075 and 1050 aluminum alloy specimens to verify the accuracy of the corrosion rate equation in ISO-9223:2012. Test results showed a reasonable agreement with the corrosion rates predicted by the equation.

Major factors determining the size distributions of atmospheric water-soluble aerosol particles at an urban site during winter (겨울철 도시지역 대기 수용성 에어로졸 입자의 크기 분포를 결정하는 주요 인자)

  • Park, Seungshik
    • Particle and aerosol research
    • /
    • v.17 no.3
    • /
    • pp.43-54
    • /
    • 2021
  • Size distributions of atmospheric particulate matter (PM) and its water-soluble organic and inorganic components were measured between January and February 2021 at an urban site in Gwangju in order to identify the major factors that determine their size distributions. Their size distributions during the study period were mainly divided into two groups. In the first group, PM, NO3-, SO42-, NH4+ and water-soluble organic carbon (WSOC) exhibited bi-modal size distributions with a dominant condensation mode at a particle size of 0.32 ㎛. This group was dominated by local production of secondary water-soluble components under atmospheric stagnation and low relative humidity (RH) conditions, rather than long-range transportation of aerosol particles from China. On the other hand, in the second group, they showed tri-modal size distributions with a very pronounced droplet mode at a diameter of 1.0 ㎛. These size distributions were attributable to the local generation and accumulation of secondary aerosol particles under atmospheric conditions such as atmospheric stagnation and high RH, and an increase in the influx of atmospheric aerosol particles by long-distance transportation abroad. Contributions of droplet mode NO3-, SO42-, NH4+ and WSOC to fine particles in the second group were significantly higher than those in the first group period. However, their condensation mode contributions were about two-fold higher in the first group than in the second group. The significant difference in the size distribution of the accumulation mode of the WSOC and secondary ionic components between the two groups was due to the influx of aerosol particles with a long residence time by long-distance transport from China and local weather conditions (e.g., RH).

The comparative analysis of KOMPSAT-3 based surface normalized difference vegetation index: Application of GeoEye data (다목적실용위성 3호의 지표 정규식생지수 산출 및 비교 분석: GeoEye 자료 활용)

  • Yeom, Jong-Min
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.80-86
    • /
    • 2014
  • In this study, we the estimated surface normalized difference vegetation index by using the KOrea Multi-Purpose SATellite-3 (KOMPSAT-3) multi-spectral images for comparative analysis. The estimated NDVI from KOMPSAT-3 is used as for comparison with the high resolution GeoEye products. The geometry conditions for atmospheric effects are selected from meta files of KOMPSAT-3 bundle data. The used geometry conditions are consist of solar zenith angle, solar azimuth angle, viewing zenith angle, viewing azimuth angle, and date. And, Atmospheric effects such as attenuation, scattering and absorption were physically simulated from water vapor, ozone and aerosol information. Generally, although ground measurements are important for accurate information, in this study, MODIS atmospheric products are used as atmospheric constituents. The surface reflectance from radiative transfer model is utilized for estimating vegetation index. The present study, to reduce atmospheric and geometry conditions between KOMPSAT-3 and GeoEye having difference observation characteristics, data acquisition time is carefully determined for reliable vegetation spectral characteristics.

Atmospheric Corrosion Process for Weathering Steel

  • Nagano, Hiroo;Yamashita, Masato
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.119-124
    • /
    • 2008
  • Steel is generally not corrosion resistant to water with formation of non protective rusts on its surface. Rusts are composed of iron oxides such as $Fe_3O_4$, $\alpha-$, $\beta-$, $\gamma-$and ${\delta}-FeOOH$. However, steel, particularly weathering steel containing small amounts of Cu, Ni and Cr etc., shows good corrosion resistance against rural, industrial or marine environment. Its corrosion rate is exceedingly small as compared with that of carbon steel. According to the exposure test results undertaken in outdoor environments, the atmospheric corrosion rate for weathering steel is only 1 mm for a century. Atmospheric corrosion for steels proceeds under alternate dry and wet conditions. Dry condition is encountered on steel surface on fine or cloudy days, and wet condition is on rainy or snowy days. The reason why weathering steel shows superior atmospheric corrosion resistance is due to formation of corrosion protective rusts on its surface under very thin water layer. The protective rusts are usually composed of two layer rusts; the upper layer is ${\gamma}-FeOOH$ termed as lepidocrocite, and inner layer is nano-particle ${\alpha}-FeOOH$ termed as goethite. This paper is aimed at elucidating the atmospheric corrosion mechanism for steel in comparison with corrosion in bulky water environment by use of empirical data.The summary is as follows: 1. No corrosion protective rusts are formed on steel in bulky water. 2. Atmospheric corrosion for steel is the corrosion under wetting and drying conditions. Corrosion and passivation occur alternately on steel surface. Steel, particularly weathering steel with small amounts of alloying elements such as Cu, Ni and Cr etc. enhances forming corrosion protective rusts by passivation.