• Title/Summary/Keyword: Atmospheric Plasma

Search Result 597, Processing Time 0.023 seconds

A Study for improving Decomposition Efficiency of Trichloroethylene using Atmospheric Plasma Reactor and Ozone Decomposing Catalyst (대기압플라즈마 및 오존 분해촉매를 이용한 트리클로로에틸렌의 분해효율 증진 연구)

  • Han, Sang-Bo;Park, Jae-Youn;Park, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.142-149
    • /
    • 2008
  • This paper proposes an effective decomposition method of trichloroethylene using pellet packed-bed non-thermal plasma reactor and catalyst. For that, two types of reactors filled with manganese dioxide and alumina pellets are designed. When $MnO_2$ packed reactor is used, TCE decomposition rate is high due to the generation of oxygen atom radicals at the surface of catalyst during ozone decomposition. In addition, When $Al_2O_3$ packed reactor is used, TCE is oxidized into DCAC and it did not decomposed into small molecules such as COx and $Cl_2$. However, the plasma processed gas using $Al_2O_3$ packed reactor is passed through the $MnO_2$ catalyst reactor, which is placed at the downstream of plasma reactor, the decomposition rate increased as well due to oxygen atom radicals through ozone decomposition. Therefore, the adequate use of $MnO_2$ catalyst in the plasma process is very promising way to increase the decomposition efficiency.

A Study on the NOx Removal Rate by Arrangement of Discharge Electrode in Pulsed Corona Discharge Reactor (펄스 코로나 반응기에서 방전극의 배열에 따른 탈질율 연구)

  • Choi, Min;Park, So-Jin;Wi, Young-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.315-323
    • /
    • 2003
  • The goal of this study if the optimization of discharge electrode for pulsed corona discharge reactor located in thermal power plant. For this purpose, we have performed experiments of NO$_{x}$ removal rate by exchange of discharge electrode diameter and arrangement of discharge electrode in the non -thermal plasma reaction facility using a ethylene as additive. If the diameter and numbers of discharge electrode were larger, the NO$_{x}$ removal rate was higher. From these results, if we optimized the shape and installed numbers of discharge electrode at the pilot plant, we could increase the NO$_{x}$ removal rate with less amount of additive than current amount.mount.

Pretreatment Effect of Waste Automotive Catalysts for VOCs Combustion (VOCs 연소를 위한 자동차 폐촉매의 전처리 효과)

  • 문정선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.191-198
    • /
    • 2000
  • For a characterization of the pretreated waste automotive catalyst the following analysis techniques were applied : EA(Elemental Analysis) BET(Brunaure-Emmett-Teller) and ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry). The combustion activity of waste automotive catalyst was investigated for methanol acetaldehyde and toluene as model VOCs in a fixed bed reactor. carbon deposit amount was decreased with increasing catalyst showed a good catalytic activity for VOCs combustion at 40$0^{\circ}C$. Catalytic activity for methanol acetaldehyde and toluence combustion was very excellent and decreased with mileage. The catalytic activity of a waste automotive catalyst for methanol combustion increased after acid treatment. The acid effect of catalytic activity was summarized as follows: HNO3>HCI>H2SO4>CH3COOH. The waste automotive catalyst regenerated by the pretreatment method might have a excellent catalytic activity for VOCs combustion.

  • PDF

Determination of Iron, Copper, and Zinc in Rainwater by Ion Chromatography (이온 크로마토그래피법에 의한 강수 중 철, 구리, 아연의 정량)

  • 이용근;이계형;이동수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.137-142
    • /
    • 1991
  • A method is developed for the simultaneous determination of dissolved iron, copper, and zinc in rainwater. The method involves 25-fold evaporative concentration, ion chromatographic separation and subsequent spectrophotometric detection after post-column reaction with 4-(2-pyridylazo) resorcinol. Analytical sensitivities, being defined by the slopes of calibration curves, are 0.93, 0.54, and 0.11 Abs/ $\mu$g/ml for iron, copper, zinc, respectively. Detection limits render around a few tenth of one ng/ml. Precisions evaluated by replicate analysis of real sample are better than 10% RSD. Due to the lack of certified standards for rainwater, the accuracy of the method could not be assessed directly. However, the results of this method agree well with those by inductively coupled plasma mass spectrometry. Analytical results for a suite of Seoul rainwaters are presented herein.

  • PDF

Characteristics of PM2.5 in Gyeongsan Using Statistical Analysis (통계분석을 이용한 경산 지역의 초미세먼지(PM2.5) 농도 특성 파악)

  • Li, Kai Chao;Hwang, InJo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.6
    • /
    • pp.520-529
    • /
    • 2015
  • The ambient $PM_{2.5}$ samples were collected by $PM_{2.5}$ sampler from September 2010 to December 2012 at Daegu University, Gyeongsan. A total of 260 samples were collected and 27 species were analyzed by inductively coupled plasma, ion chromatography, and thermal optical reflectance methods. Factor analysis identified four sources such as biomass burning source/secondary aerosol source, soil source, industry source, and incinerator source/mobile source. Also, backward trajectories were calculated using HYSPLIT 4 (Hybrid single-particle lagrangian integrated trajectory) model and PSCF (Potential source contribution function) model was applied to identify the possible source locations of carbonaceous species and water soluble ions species. PSCF results showed that the possible source locations of most chemical constituents measured in Gyeongsan were the industrial areas in the eastern coast of China, northeast regions of China, the Gobi Desert, and east sea of Korea.

Characterization of Inorganic Chemicals in Total Suspended Particulates and a Source Apportionment by Chemical Mass Balance Model (대기 분진의 무기 화학적 조성 분석과 Chemical Mass Balance에 의한 오염원 기여도 산출)

  • Seo, Young-Hwa;Koo, Ja-Kong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.112-120
    • /
    • 1992
  • Twenty four metal, nonmetal elements and 4 major anions in total suspended particulates (TSP) collected at two sites in Daejon city from october to december in 1991 by a Hi-vol sampler were thoroughly analyzed by Inductively Coupled Plasma/ Atomic Emission Spectrometry (ICP/AES) and Ion Chromatography (IC). These analyzed data were used to perform a receptor modeling using the Chemical Mass Balance (CMB) for the source apportionment of TSP sample. Approximately 60% TSP weight in industrial complex area was influenced by potential industrial sources and 25% was by heating fuels and automobile emissions, whereas a half of TSP in residential area was influenced by surrounding environment and more than 35% of TSP was influenced by heating fuels. The CMB model provided source apportionment results reasonably and scientifically with a minor limitation.

  • PDF

Atmospheric pressure plasma deposition of $SiO_X$ thin films by direct-Type pin-to-plate dielectric barrier discharge for flexible displays

  • Gil, Elly;Lee, June-Hee;Kim, Yang-Su;Yeom, Geun-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1483-1485
    • /
    • 2009
  • Silicon dioxide ($SiO_2$) thin films were deposited using a modified DBD called a "pin-to-plate-type DBD" in order to generate high-density plasmas with a gas mixture of PDMS/$O_2$. The effect of the gas mixture on the physical and chemical properties of $SiO_2$ deposited by the pin-to-plate-type DBD with the mixture of PDMS/$O_2$ was investigated.

  • PDF

Trace Elements Characterization of PM10 in Seoul Area (서울지역의 PM10 중 미량원소의 특성 평가)

  • 신은상;최민규;영선우;정용삼
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.363-372
    • /
    • 2002
  • PM$_{10}$ aerosols were collected using low volume air sampler every month intervals from September 1992 to August 1991 in Seoul. These samples were analyzed for 20 trace elements (Al, As, Ba, Br, Ca, Cl, Co, Cr, Fe, K, Mn, Na, Ni, Pb, Sc, Se, Si, Ti, V and Zn) by INAA (instrumental neutron activation analysis), XRF (x-ray fuorescence spectrometer), and ICP (inductively coupled plasma). PM$_{10}$ mass concentrations higher than 70 $\mu$g/m$^3$ were 32% of 60 samples and had significantly higher concentrations in spring and winter than in summer and fall (p-value<0.001). The elements of As, Br, Cl, Ni, Pb, Se, V, and Zn are enriched by factors of 20 to 2,000 relative to their natural abundance in crustal soil. To further identify common sources of pollution-related trace elements, factor analysis was applied to the trace elements concentration data. Major sources that contribute to the atmospheric loading of these elements were found to include fossil fuel combustion, automobile and waste incineration (33.2%), metal processing industry (18.2%), and soil(29.8%).8%).

Optical Emission Characteristics of Atmospheric Pressure Dielectric Barrier Discharge (대기압 유전체배리어방전의 발광특성)

  • Kim, Jin Gi;Kim, Yoon Kee
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.100-106
    • /
    • 2015
  • Plasma properties of dielectric barrier discharges (DBDs) at atmospheric pressure were measured and characterized using optical emission spectroscopy. Optical emissions were measured from argon, nitrogen, or air discharges generated at 5-9 kV using 20 kHz power supply. Emissions from nitrogen molecules were markedly measured, irrespective of discharge gases. The intensity of emission peaks was increased with applied voltage and electrode gap. The short wavelength peaks (315.9 nm and 337.1 nm) measured at the middle of DBDs were significantly increased with applied voltage. The optical emission from DBDs decreased with the addition of oxygen gas, which was especially significant in argon discharge. Emission from oxygen molecules cannot be measured from air discharge and argon discharge with 4.8% oxygen. The emission intensity at 337.1 nm and 357.7 nm related with nitrogen molecule was sensitively changed with electrode types and discharge voltages. However, the pattern of argon emission spectrum was nearly the same, irrespective of electrode type, oxygen content, and discharge voltage.

Mechanical Properties of Elastomeric Composites with Atmospheric-Pressure Flame Plasma Treated Multi-Walled Carbon Nanotubes and Carbon Black (대기압 화염 플라즈마 처리한 다중벽 탄소나노튜브 및 카본블랙 강화 고무복합재료의 기계적 특성 연구)

  • Sung, Jong-Hwan;Lee, Dong-Joo;Ryu, Sang-Ryeoul;Cho, Yi-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1209-1215
    • /
    • 2010
  • The effects of multi-walled carbon nanotube (MWCNT) content, carbon black (CB) content, atmospheric-pressure flame plasma (APFP) treatment, and acid treatment on the mechanical properties of elastomeric composites were investigated. For pure or filled rubbers with the given amount of CB (20 and 40 phr), the tensile strength and modulus of the elastomeric composites increase similarly with the MWCNT content. A composite with APFP-treated MWCNTs shows a hardening effect (high strength, high modulus, and high ductility) unlike the one with untreated MWCNTs. On the other hand, a composite with APFP-treated CB shows a softening effect (high strength, low modulus, and high ductility), which is unlike a composite with untreated CB. As the refluxing time increases from 1 h to 2 h and the sulfuric acid concentration increases from 60% to 90%, the tensile strength and modulus of a composite decrease. Thus, it is found that the MWCNT content, CB content, APFP treatment, sulfuric acid concentration, and refluxing time have an important effect on the mechanical properties of NBR composites.