• Title/Summary/Keyword: Atmospheric Plasma

Search Result 600, Processing Time 0.031 seconds

A study of the space sterilization device using atmospheric-pressure DBDs plasma (대기압 유전체장벽방전을 적용한 플라즈마오존 공간살균장치에 관한 연구)

  • Oh, Hee-Su;Lee, Kang-yeon;Park, Ju-Hoon;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.281-289
    • /
    • 2022
  • Plasma ozone is utilized in a variety of applications in the field of sterilization due to its high sterilization performance. Dielectric materials used in DBD(dielectric barrier discharges) are mainly polymer, quartz and ceramics. These dielectric layers have the advantage of limiting the amount of supplied electron charge and allowing plasma to occur evenly on the surface of dielectric. Actually, the target or environment for sterilization is often a complex structure, so research and academic study are needed by utilizing the concept of space sterilization. In this study, the device is applied to generate DBD plasma at atmospheric pressure for disinfection due to the effectiveness in producing radicals and ozone. The generator of plasma ozone is a basic structure of dielectric barrier discharge by placing ceramic tube dielectrics and stainless steel electrical conductors at regular intervals. Various applications can be developed based on the proposed design method. Plasma ozone generation for space sterilization device is recognized as an excellent sterilization device. Through the design and verification of the device, we intend to establish an optimal design of the spatial sterilization device and provide the basis data for sterilization applications.

Multielement Analysis in Airborne Particulate Matter $(PM_{10})$ by INAA, ICP and AAS (INAA.ICP.AAS를 이용한 대기먼지 $(PM_{10})$의 다원소분석)

  • 정용삼;문종화;정영주;박광원;이길용;윤윤열;심상권;조경행;한명섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.495-503
    • /
    • 1999
  • Airborne particulate matter $(PM_{10})$ collected using high volume air sampler and silica fiber filter were analyzed by Instrumental Neutron Activation Analysis(INAA), Inductively Coupled Plasma Atomic Emission Spectrometry(ICP-AES) and Atomic Absorption Spectrometry(AAS), and the results were compared with each other. 30~40 trace elements in environmental standard reference materials(NIST SRM 1648 and NIES CRM No.8) were analyzed for the analytical quality control. The relative error for two-third of elements detected was less than 10%, and the standard deviation was less than 15%. During the sampling period for 24 hours, the mass concentration of total suspended particulate was 36.1$\mu\textrm{g}$/㎥ and the value is lower than the critical level in Korea. In the results of NAA, the elements of Al, As, Ba, Fe, La, Mg, Na, Sb, Zn were well agreed with those of other methods. In statistical estimation between different methods, the deviation of Al, Ba, Cr, Fe was less than 10% and quite reliable.

  • PDF

CF4 Treatment Characteristics using an Elongated Arc Reactor (신장 아크 반응기를 이용한 CF4 처리특성)

  • Kim, Kwan-Tae;Lee, Dae-Hoon;Lee, Jae-Ok;Cha, Min-Suk;Song, Young-Hoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.85-93
    • /
    • 2010
  • $CF_4$ removal characteristics were investigated using an elongated arc reactor. The advantage of the elongated arc reactor includes direct use of treated gas as plasma operating gas and the enhancement of the removal reaction by using a thermo-chemistry and a plasma induced chemistry at the same time. Geometrical configurations, such as the length of the reactor and the shape of a throat, were tested to get an optimized removal efficiency with low power consumption. As results, over 95% of $CF_4$ removal was obtained with 300 lpm of total flowrate for various $CF_4$ concentration (0.1~1%). Corresponding specific energy density (SED), which means required electrical energy to treat the unit volume of treated gas, is about 3.5 kJ/L, The present technique can be applied to real applications by satisfying three major concerns, those are the high flowrate of treated gas, high removal efficiency (> 95%), and low power consumption (< 10 kJ/L).

Chair-side surface treatment method for inducing hydrophilicity in titanium dental implant (치과용 티타늄 임플란트의 골융합 증진을 위한 체어사이드 친수성 표면처리방법)

  • Lee, Jung-Hwan;Jun, Soo-Kyung;Lee, Hae-Hyoung
    • The Journal of the Korean dental association
    • /
    • v.54 no.12
    • /
    • pp.985-995
    • /
    • 2016
  • Titanium (Ti) has been widely used for dental implant due to great biocompatibility and bonding ability against natural alveolar bone. A lot of titanium surface modification has been introduced in dentistry and, among them, methods to introduce micro/nano-roughened surface were considered as clinically approved strategy for accelerating osseointegration of Ti dental implant. To have synergetic effect with topography oriented favors in cell attachment, chair-side surface treatment with reproducibility of micro/nano-topography is introduced as next strategy to further enhance cellular functionalities. Extensive research has been investigated to study the potential of micro/nano-topography preserved chair-side surface treatment for Ti dental implant. This review will discuss ultraviolet, low level of laser therapy and non-thermal atmospheric pressure plasma on Ti dental implant with micro/nano-topography as next generation of surface treatment due to its abilities to induce super-hydrophilicity or biofunctionality without change of topographical cues.

  • PDF

A Composite of Metal and Polymer Films: Thin Nickel Film Coated on a Polypropylene Film after Atmospheric Plasma Induced Surface Modification

  • Song, Ho-Shik;Choi, Jin-Moon;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.110-114
    • /
    • 2011
  • Polymeric films of high chemical stability and mechanical strength covered with a thin metallic film have been extensively used in various fields as electric and electronic materials. In this study, we have chosen polypropylene (PP) as the polymer due to its outstanding chemical resistance and good creep resistance. We coated thin nickel film on PP films by the electroless plating process. The surfaces of PP films were pre-treated and modified to increase the adhesion strength of metal layer on PP films, prior to the plating process, by an environment-friendly process with atmospheric plasma generated using dielectric barrier discharges in air. The surface morphologies of the PP films were observed before and after the surface modification process using a scanning electron microscope (SEM). The static contact angles were measured with deionized water droplets. The cross-sectional images of the PP films coated with thin metal film were taken with SEM to see the combined state between metallic and PP films. The adhesion strength of the metallic thin films on the PP films was confirmed by the thermal shock test and the cross-cutting and peel test. In conclusion, we made a composite material of metallic and polymeric films of high adhesion strength.

A Study on the Control Performance for Hazardous Gases by Surface Discharge induced Plasma Chemical Process (연면방전의 플라즈마 화학처리에 의한 유해가스제어 성능에 관한 연구)

  • 이주상;김신도;김광영;김종호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.185-190
    • /
    • 1995
  • Recently, because of the worse of the air pollution, the excessive airtught of building and the inferiority of air conditioning system, the development of high efficiency air purification technology was enlarged to the environmental improvement of an indoor or a harmful working condition. The air purification technology has used chemical filters or charcoal filters or charcoal to remove hazardouse gaseous pollutants (SO$_{x}$, NO$_{x}$, NH$_{3}$, etc.) by air pollutant control technology, but they have many problems of high pressure loss, short life, wide space possession, and treatment of secondary wastes. For these reason, the object of reasearch shall be hazardous gaseous pollutants removal by the surface discharge induced plasma chemical process that is A.C. discharge of multistreams applied A.C. voltage and frequency between plane induced eletrode and line discharge eletrode of tungsten, platinum or titanium with a high purified alumina sheet having a film-like plane. As a result, the control performance for hazardous gaseous pollutants showed very high efficiency in the normal temperature and pressure. Also, after comtact oxidation decomposition of harmful gaseous pollutants, the remainded ozone concentration was found much lower than that of ACGIH or air pollution criteria in Korea.rea.

  • PDF

Evaluation on Decomposition Processes of Laundry wastewater produced from Steam Generator (증기발생기 세정폐액 처리 공정 평가)

  • 강덕원;이홍주;최영우;이두호
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.78-82
    • /
    • 2003
  • For the decomposition of laundry wastewater containing Fe-EDTA produced from the steam generators in nuclear power plants, Supercritical Water Oxidation (SCWO) Process, Photocatalytic Oxidation (PO) Process, and Dielectric Barrier Discharge (DBD) Atmospheric Pressure Plasma Process were evaluated. Even though EDTA was converted over 99.98 % by the SCWO process, it was estimated that the countermeasure against corrosion of the equipment should be reinforced for the process stability. It was considered that the PO process is not appropriate for the decomposition of high concentrated laundry wastewater since the conversion ratio of EDTA was around 10 %. Finally, High efficiency of the decomposition of organic matter (methylene blue) was obtained using DBD process even low energy was supplied. However there is still room for the evaluation of EDTA decomposition in order that the DBD process should be applied for the field samples.

  • PDF

Manufacture of MoO3 Coating Layer Using Thermal Spray Process and Analysis of Microstructure and Properties

  • Yu-Jin Hwang;Kyu-Sik Kim;Jae-Sung Park;Kee-Ahn Lee
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1535-1538
    • /
    • 2022
  • MoO3 thick film was manufactured by using a thermal spray process (Atmospheric Plasma Spray, or APS) and its microstructure, phase composition and properties of the coating layer were investigated. Initial powder feedstock was composed of an orthorhombic α-MoO3 phase, and the average powder particle size was 6.7 ㎛. As a result of the APS coating process, a MoO3 coating layer with a thickness of about 90 ㎛ was obtained. Phase transformation occurred during the process, and the coating layer consisted of not only α-MoO3 but also β-MoO3, MoO2. Phase transformation could be due to the rapid cooling that occurred during the process. The properties of the coating layer were evaluated using a nano indentation test. Hardness and reduced modulus were obtained as 0.47 GPa and 1.4 GPa, respectively. Based on the above results, the possibility of manufacturing a MoO3 thick coating layer using thermal spray is presented.

Time Dependent Interaction between Electromagnetic Wave and Dielectric Barrier Discharge Plasma Using Fluid Model (유체 모델을 이용한 유전체 장벽 방전 플라즈마와 전자기파 간의 시간 의존적 상호 작용 분석)

  • Kim, Yuna;Oh, Il-Young;Jung, Inkyun;Hong, Yongjun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.8
    • /
    • pp.857-863
    • /
    • 2014
  • In determining interaction between plasma and electromagnetic wave, plasma frequency and collision frequency are two key parameters. They are derived from electron density and temperature, which vary in an extremely wide range, depending on a plasma generator. Because the parameters are usually unknown, traditional researches have utilized simplified electron density model and constant electron temperature approximation. Introduction of plasma fluid model to electromagnetics is suggested to utilize relatively precise time dependent variables for given generator. Dielectric barrier discharge(DBD) generator is selected due to its simple geometry which allows us to use one dimensional analysis. Time dependent property is analyzed when microwave is launched toward parallel plate DBD plasma. Afterwards, attenuation tendency with the change of electron density and temperature is demonstrated.

Effect of cold plasma treatment on the quantitative compositions of silkworm powder

  • Jo, You-Young;Seo, YoungWook;Lee, Young Bo;Kim, Seong-Ryul;Kweon, HaeYong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.38 no.2
    • /
    • pp.25-30
    • /
    • 2019
  • Atmospheric-pressure plasma technique is a technology for sterilizing agricultural product. In this study, dielectric barrier discharge plasma was applied to silkworm powder for 1 to 5 h with less than 2 ppm of $O_3$ and $NO_2$. Quantitative compositions including proximate contents, mineral and heavy metal contents, fatty acids, vitamins, and DNJ contents were measured. Proximate contents of silkworm powder were protein (57.2%), fat (9.9%), fiber (4.6%), ash (10.1%), and moisture (5.7%). These compositions were not affected by the treatment of plasma. Silkworm powder has 5 abundant minerals potassium (K), phosphorus (P), sulfur (S), calcium (Ca), and magnesium (Mg). Among these minerals, plasma treatment decreased the contents of P and S sharply from 732.3 to 176.8, and 492.7 to 185.2 mg/100g, respectively. Heavy metal contents including lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg) were not detected in the silkworm powder. Five vitamins such as ascorbic acid (13.6 mg/100g), riboflavin (5.4 mg/100g), ${\beta}$-carotene (1.8 mg/100g), niacin (0.6 mg/100g), and thiamine (0.4 mg/100g) were not significantly changed by plasma treatment. Silkworm powder is composed of 30 parts saturated fatty acids and 70 parts unsaturated ones. The fatty acid composition was not significantly changed by plasma treatment. The DNJ content of silkworm powder (3.72 mg/g) was also nearly constant within the experimental condition of plasma treatment.